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Abstract

The siliciclastic rocks in the Ucayali Basin are the main reservoirs. They contain
the biggest gas accumulation in Peru. The complexity of the different depositional
environments of these rocks have been studied over recent years by various researchers.

Aeolian and ephemeral fluvial environments were identified in core information
from many wells in the area. The complexity of the areal distribution of these sandstones
according to the development wells are not continuous as 3D facies model building at
first attempt. For this reason, the possibility to integrate well-log data with seismic
allowed us to evaluate in qualitative and quantitative manner.

This study presents the implementation of a stochastic seismic inversion using the
algorithm Ensemble Smoother with Multiple Data Assimilation (ES-MDA) coupled with
a Facies Bayesian Classification to characterize the areal distribution of the most
favorable facies to be reservoir. The process begins using available well-log data and
validates the results at this scale, and then extrapolates the entire process using the seismic
data information. Most of the entire workflow including the stochastic seismic inversion
and Bayesian classification could be done using Python (open-source programing
language) at different scale dimensions such as, well-log data (1D) and seismic data (2D).

Overall, the stochastic seismic inversion offers improvements compared to a
specific deterministic method such as, better vertical resolution and non-unique results of
the inverted elastic properties. Also, the seismic inversion coupled with the Bayesian
classification allows to delineate the facies distribution according to their depositional
environment in relation to amplitude and elastic properties for the main gas reservoir units
in the area. Moreover, different features of aeolian and fluvial systems were identified in
the different seismic sections.

Keywords: siliciclastic reservoirs, stochastic seismic inversion, ES-MDA, Bayesian
classification.
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1 INTRODUCTION

The south part of Ucayali Basin, also named The Camisea sub-basin allocated the
main volumes of Gas in Peru with a production that has already surpassed the average of
79,204 Boe/day. It seems to be one of the most important Peruvian sedimentary basins
according to production terms. It is one of the Sub-Andean Basins of Peru, the basin is
bordered by the Maranon basin to the North, Huallaga Basin to the west, Madre de Dios
Basin to the south, and the Brazilian Shield to the east (Perupetro, 2006).

In the last few decades, seismic interpreters have put increasing emphasis on more
quantitative techniques for seismic interpretation, as these can validate hydrocarbon
anomalies and give additional information during prospect and reservoir characterization
(Avseth et al., 2005). Quantitative seismic interpretation seeks to understand and measure
the distribution of reservoir properties and elastic parameters of rocks in subsurface. The
most important techniques include post-stack amplitude analysis, seismic attributes
analysis, acoustic and elastic impedance inversion, offset-dependent analysis (AVO),
facies modeling, forward seismic modeling, rock-physics models, petrophysical seismic
inversion and extended elastic impedance. As a result, large volumes of information allow
us to reduce the uncertainty in decision-making for exploration and reservoir oil and gas
departments (Simm & Bacon, 2014).

Seismic quantitative interpretation has several tools as aforementioned, one of the
most important is the seismic impedance inversion (acoustic and elastic). Impedance
inversions take into account the full waveform of the seismic trace, not just the
amplitudes. In general, impedance inversion is a tool to derive seismic attributes (I,
V,/Vs, Poisson's ratio) that can be linked to rock properties (lithofacies, porosity, pore
fluids, etc.) using rock-physics models and statistical techniques (Avseth et al., 2005). A
popular approach to the facies identification problem is the use of crossplot templates of
“impedance type” properties such as I, and V}, /V; (@degaard & Avseth, 2004). However,

in the area the only one study regarding this topic was submitted by Huaman (2018).

Seismic inversion can be basically divided into deterministic and stochastic. The
solutions of the deterministic inverse problem are formally shown by (Tarantola, 2005)
and have been widely used since then. However, deterministic inversion tends to run into
problems such as the impossibility of estimating uncertainty and the strong bias of the
result due to the low-frequency model. To address these aspects, it is preferable to use

14



stochastic inversion due to it can generate several realizations of the model that seek to
describe the potential variabilities of rocks in the subsurface (Simm & Bacon, 2014).
Currently, there are several methods to carry out stochastic seismic inversion (Buland &
Omre, 2003). The method applied by Liu & Grana (2018) for stochastic seismic inversion
method is called Ensemble Smoother with Multiple Data Assimilation (ES-MDA). This
method is able to tackle the problem of nonlinearity of the direct model in Aki-Richards

equation (Aki & Richards, 1980) for largest angles and in the domain of rock-physics.

Recently, it is common to use elastic seismic inversion results for facies
classification, because ambiguities in lithology and fluid identification base only on

normal-incident reflection amplitudes and impedance (I,) can be often effectively
removed by adding information about V}, /V; - related attributes (Avseth et al., 2005). For
instance, Mukerji et al. (1998) performed facies classification based on acoustic
impedance (I,) and elastic impedance (I5) using Bayes' theorem. The methodology
involves passing one or more elastic parameters to a volume directly related to the
properties of reservoirs and/or the facies using the relationship between them.
Unfortunately, studies about seismic facies characterization are scares in the area, the

only one was summited by Huaman (2018).

In this dissertation, a workflow for seismic quantitative interpretation in reservoir
sandstones in Ucayali Basin is presented. To do this, a stochastic seismic inversion was
carried out using ES-MDA and, with the elastic volume (I, and V, /V%) results from this
step a Bayesian facies classifications were performed. The facies were defined based on
data from three wells in the study area. For study purposes five types facies were reduce
to two main groups reservoir (sandstone and fine sandstone) and non-reservoir (shale,
carbonate and anhydrate) facies. To carry out the entire workflow, the Python

programming language was used.

The main objective of the study is to understand the distribution of these facies in
the different reservoirs observed in the field and unhide the depositional behavior in the
structure in relation to amplitude, elastic properties and facies distribution. The selected
area for the study is a seismic crop where 3 wells which have the necessary well-log data
to perform this study are available. The target zones are framed between Upper Nia at the
top and Copacabana at the bottom of the sequence.
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By the other hand, another main objective is to validate the applicability of
stochastic inversion using ES-MDA and Bayesian facies classification to gas reservoir
sandstones. Some companies performed seismic inversion and rock-physics internally,
but any of them apply results in their currently making-decision geological 3D model.
For this reason, the application of stochastic seismic inversion using the ES-MDA to gas

reservoir in Ucayali basin can serve as a basis for future applications.
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2 UCAYALI BASIN

The south part of Ucayali Basin, also known as the Camisea sub-basin, presents a
remarkable structure style and plays an important role in hydrocarbon production. This
sub-basin is located between the southern Ucayali Basin and northern Madre de Dios
Basin, Figure 1. The western limit of this sub-basin is the basement-involved structure of
the Otishi High. The Tambo Fault, probably a lateral ramp of the Otishi High, constitutes
a sharp limit between the different structural styles of the north and the south (Zamora et
al., 2019).

Figure 1 —Shows the Marafion, Ucayali and Madre de Dios Basins overlaying the
topography map of Peru. Peruvian Sub-Andean sub-basins (Santiago,
Huallaga, and Ene) are isolated from the major Amazonian foreland basin
system. The Camisea sub-basin (blue rectangle) is located between the
southern Ucayali Basin and northern Madre de Dios Basin. Adapted from
Zamora et al. (2019).
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The predominant structural style in the basin is the thin-skinned, generating trends
of anticline and syncline which has almost the same NW-SE direction, Figure 2. The
geometry of these anticlines is controlled by inverse faults with vengeance in the Forland,
out-of-sequence thrusts (OOST) commonly ends up in triangle zones and back-thrust
(Espurt et al., 2011).

\ Camisea Sub-Basin
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Figure 2 — The NW-SE trend of anticlines which most of them are gas accumulated

structures.

Regional studies suggest that the folding in the Peruvian Sub-Andean begins in
the middle Miocene, and it remains active (Hermoza, et al., 2005). On the other hand,
other studies propose that the current configuration of the basin was formed by the third
Quechua orogeny (Simon, 1993a). Overall, the structures affect only rocks from Silurian
age which form thin folded layers disconnected from older layers of rock (Coward, 1983).
Figure 3 presents the long-lived sedimentary record in The Sub-Andean zone of Peru
from Ordovician to present (Zamora et al., 2019), and the blue rectangle highlight the
statigraphy portion of the study.
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Figure 3 — Schematic chronostratigraphic along the strike of the Sub-Andean Zone.
Adapted from Zamora et al. (2019), blue box represents the stratigraphy

studied portion.

2.1 Stratigraphy

The stratigraphy of South part of the Ucayali Basin, more specifically the sub-
basin Camisea consists of rocks from Ordovician to Quaternary, with a thickness of
around 8000 meters, which are above a Precambrian basement of granite. All these units
are affected by many erosive events which the most expressing is at base of the
cretaceous. It has a dipping of 2 degrees and erodes the Permian and Pre-Cretaceous
reservoirs in the NE-SW direction (Disalvo et al., 2008). In this study will be described
the stratigraphy units involved in the seismic inversion approach which include Ene,
Lower Noi, Upper Noi, Shinai, lower Nia, Middle Nia and Upper Nia units, Figure 4.
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Figure 4 — Generalized stratigraphic column of the south part of the sub-basin Camisea.
Adapted from Pefa et al. (2018).

Regarding the providence of the sediments for the reservoir to be included in this
study, there has been recently established some sceneries. Ene-Noi and Lower Nia
reservoir sands (Upper Permian), Pefa et al. (2018) interpreted a possible source of
sediments from the Southeast and East (from a source of ~552-612Ma). Probably is the
similar source that Bahlburg et al. (2009) describes as a “Late Neoproteroizoic Mobile
Belt” (~541Ma). Also, Pefa et al. (2018) proposed the source of sediments that was
located in the peleogeographical highlands known as “Alto de Manu” and “Alto de
Paititi”, some another evidence come from seismic interpretation that shows a pinch-out

and truncation of these reservoir units above these paleo-highlands.
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For the Upper Nia (Albian - Cenomanian) reservoir sands, the source of sediments
could be from the East (from a source of ~1035Ma - ~1048Ma, which could be the
“Sunsas Mobile Belt” according to (Bahlburg et al., 2009). Additionally, Pefa et al.
(2018) based on both paleocurrents from well-log data and a gneiss age (1060+- 6 Ma)
from the Otishi mountains. They concluded that the Otishi mountains could be another

possible source of sediments.

2.1.1 Ene Formation (Upper Permian)

The Ene Formation is immediately above Copacabana Group, its sediments are
considered to be deposited in an ephemeral fluvial lacustrine environment with a range
of thickness from 25 to 34 meters in this part of the sub-basin. At the base of this unit is
mainly composed by a thin layer of 3-4 meters of dark gray shale with high organic
material (Seminario et al., 2005), followed by a present of sandstones composed of fine

to very fine grain of quartz and feldspar, cemented with dolomite.

2.1.2 Noi Formation (Upper Permian)

The Noi formation is apparently deposited in a more complex environment which

could be separated into two members, Lower Noi and Upper Noi.

In the east part of the Camisea sub-basin the Lower Noi is interpreted as
longitudinal dune cords type Erg, Figure 5. The Lower Noi member is composed of fine
to medium grain of red sandstones, the grains are composed of quartz (85%), feldspar
(10%) and lithic (5%) with porosity values of 13% and permeability from 4 to 440
millidarcy. Additionally, the member presents variable thickness from 15 to 80 meters
(Grosso et al., 2017).

The Lower Noi seismic amplitude map shows rib-type bands corresponding to the
longitudinal dunes and adjacent interdunes, with a homogeneous spacing of about 3000
meters. The geomorphologic width of the dunes is 800 to 1000 meters and the interdunes
are about 2000 meters. The direction of the paleocurrents is towards the NE according to
well-log data, and the FMI images indicate levels of high-angle cross-stratification,

corresponding to an aeolian environment (Grosso et al., 2017).
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Figure 5 — Seismic amplitude map of the Lower Noi member showing the geometry of

the dunes and interdunes. Adapted from Grosso et al. (2017).

This complexity of dunes and interdunes are also distinguished in core
information. Dune facies are characterized by cross-stratification of high angle. On the
other hand, interdune facies are associated with parallel and cross stratification of low
angle, presence of anhydrite associated with bioturbated paleosol. The action of the water
table during aeolian construction provided favorable conditions to the accumulation and
preservation of interdune deposits (dry and wet) in these probable hybrid dry-wet aeolian
systems (Colombo et al., 2019). A continuous layer of anhydrite from 2 to 9 meters is
deposited above this member, representing a regional flood due to a sudden rise in the
water table associated with vadose cementation of the sandstones with anhydrite in an
arid climate. Moreover, the differential compaction of the interdunes reaches values of
45% to 75% and it probably has caused the folding of the overlying units of Upper Noi,
Shinai, Lower Nia, and Middle Nia, this folding is also appreciated in seismic
interpretations (Grosso et al., 2017).

The Upper Noi member corresponds to a grain growth of siliciclastic sequence of
subfeldspathic sandstones, dolomites, sandy claystone and varicolored claystone, with an
approximate thickness of 30 meters at least in Kinteroni field. The Upper Noi member is
composed of fine to coarse grain of sandstones, and with a moderate present of cements
(8-16.5%), the composition of these cements can be dolomitic, calcareous, feldspathic,
silicic, hematitic and argillaceous. Towards the base of the Upper Noi member is observed

a high degree of bioturbation, deformation bands by diagenesis. The middle part of the
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Upper Noi member is characterized by the presence of massive sandstones that graded to
sandstones with plane-parallel lamination occasionally altered due to fractures partially
filled with dolomite. Towards the top, the main sedimentary feature is high angle cross

bedding in sandstones (Rojas et al., 2013).

According to sedimentological studies in the Upper Noi, four facies associations
related to a specific system environment were recognized, such as lacustrine, evaporitic
(sabkha), ephemeral fluvial and aeolian deposits Figure 6. All of them were part of a
marginal aeolian system, which was influenced by clime, eustatic and tectonics changes
typical of that period of time. Moreover, petrophysical studies of this reservoir indicates
the presence of both primary and secondary porosities with ranges of values between 8
and 18%, and permeability in the order of 1 millidarcy to 1400 millidarcy (Rojas et al.,
2013).
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Figure 6 — Location of Kinteroni field (orange box), on the left down part drill core picture
and lithological column of the Upper Noi member, Camisea Sub-basin, Peru.
Adapted from Rojas et al. (2013).

2.1.3 Shinai Formation (Upper Permian)

Immediately after the deposition of the aeolian system of the Noi interval, the
region is affected by a rise of sea level. This condition allowed the deposition of dark
shaly and calcareous sediments (marine) with some intervals of chert mainly the center
part of the interval, the thickness average of this formation is around 80 meters in the area

(Seminario et al., 2005). In the Kinteroni field the average thickness is 90 meters.
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2.1.4 Lower Nia Formation (Upper Permian)

The Lower Nia Formation is above a geological Permian unconformity and is
below a sabkha surface which is followed by an important pre-cretaceous unconformity,
the formation is deposited in a pre-cretaceous time (Upper Permian). The Lower Nia Fm.
is composed of fine to medium grains of sandstones (feldspar-rich and lithic) showing
very good sorting, reddish appearance and the average thickness of 120 meters, the
Cretaceous unconformity reduce and even disappear the Lower Nia formation to the
southeast part of the basin (Rojas, 2013).

Generally, Lower Nia is considered to be deposited in a desert aeolian
environment with ephemeral fluvial episodes, Sabkha and, lacustrine (Disalvo et al.,
2002); (Seminario et al., 2005); and (Disalvo et al., 2008). The intercalation of dunes and

interdunes are the most representative facies in the whole section Figure 7.
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Figure 7 — Location of Kinteroni filed in the Camisea sub-basin, on the right part
lithological column of the Lower Nia, Camisea sub-basin, Peru. Adapted
from Rojas et al. (2013).

Three main sections could be identified, the lower section shows a basal aeolian
dunes that shows grain fall and cross bedding grading, with coarse to conglomeratic
laminae. Those laterally continuous deflation lags within the aeolian sandsheet deposits
could represent periods of alternating aeolian accumulation under dry-wet conditions
(Bristow & Moutney, 2013). On the other hand, the middle section is the most
heterogeneous part and shows intercalations between small dunes and damp to wet

interdune facies. The abundance of interdune deposits showing a facies association such

24



as eolian sand sheets and climbing sand with parallel stratification suggests that the
interval was accumulated under wet conditions. Finally, the upper section is represented
by homogeneous dune deposits with excellent reservoir properties and composed of fine

sandstones with high angle cross bedding suggesting dry conditions of the system.

Overall, Lower Nia formation is interpreted as a Wet aeolian system, based on the
position of water table in relation to the paleo-depositional surface and facies association
(Kocurek & Havholm, 1993) . Lower Nia is characterized by the present of aeolian dunes
with intervening interdunes that exhibit evidence of sedimentation that is influenced by
damp and/or wet surface conditions. In such systems the behavior of the accumulation
surface over time is controlled by changes in the level of the water table, sustained-water
table decreases aeolian deflation, enhancing the preservation of wet interdunes (Frank &
Kocurek, 1996). Therefore, the accommodation in Lower Nia formation in the three
aforementioned sections are controlled by the continuous rise of water table resulted in
stabilization of dunes and interdunes, and development of the laterally continuous

paleosol horizon on the top of the stratigraphic sections.

2.1.5 Middle Nia Formation (Permian-Triassic)

The lithology is composed of clays with intercalation of limestone, dolomite and
particularly in the area with level of anhydrate which is considered to be deposited in a
restricted marine environment. According to new studies of thermochronology Middle
Nia Shale is proposed to be deposited in a period between Permian and Triassic, (Pefa et
al., 2018).

2.1.6 Upper Nia Formation (Cretaceous)

Lithology is constituted by fine sandstones of reddish-to-reddish gray color, with
horizontal or cross parallel lamination. In the basin the Unit presents an average thickness
of approximately 25 m with good lateral continuity with porosities vary from 18- 20%
and permeabilities of 50-1500 millidarcy (Seminario et al., 2005). In the area of the study
the thickness tends to increase up to 70 meters on average.

Core information in the Kinteroni field of the sedimentary interval of Upper Nia
is interpreted as generated in an alluvial environment, with mainly non-channelized
deposits in regions with a seasonal or strongly intermittent discharge. Also, deposits of
ephemeral shallow lakes are recorded which could represent the distal part of a
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distributary fluvial systems (Ribes et al., 2015). In a more regional aspect, the interval
cored in Kinteroni field represents the proximal area of a sedimentary complex
environment which could be interpreted as a combination of an ephemeral fluvial system
and a sheet-flood dominated fluvial distributary system with a sedimentary stacking
pattern generated by the superposition of non-channeled flows with shallow channels of

low sinuosity.

N Distributary fluvial system model
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Figure 8 — Schematic depositional model of a sheet-flood dominated fluvial distributary
system. The proximal area is characterized by unconfined flow in alluvial
environments which could represent Upper Nia in the Kinteroni field. The
medial area is characterized by ephemeral streams (unconfined terminal
splay), and the distal area exhibits playa-lake and lacustrine environments.
Adapted from Ribes et al. (2015).

2.2 Structural Style

The main structures in the Camisea sub-basin are anticlines and synclines , which
are formed by low-angle thrust faults of hundreds to thousands of meters of rejection
(Suppe, 1983). The angle of the main fault planes depends upon the lithology, commonly
the angles are less than 16 degrees when they go through the Silurian-Devonian rocks,
and close to the upper part of this cycle the angles tend to be horizontal. Once the faults
cut the upper part of the Paleozoic and Cretaceous sections, the angles are around 10° a
20°, then go back to be horizontal in the tertiary base, and finally change the direction

forming fold-thrust belt and, go up to surface (Disalvo et al., 2002).
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All these angular variations produce secondary oblique faults to the mayor fault
which segmented the trend. As a result, minor anticlines are formed as a consequence of
these secondary oblique faults, a clear example is the trend of structures from northwest
to southeast in this region; Kinteroni (study area of thesis), Mipaya, Saniri, Pagoreni, San
Martin and San Martin Este (Disalvo et al., 2008). This structural trend of anticlines and
synclines showed in Figure 9 is the most distal part of the Andean deformation front and

has an approximate length of 110 kilometers (Venturo & Huaman, 2013).
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Figure 9 — Composite seismic line showing the trend of anticlines and synclines from

northwest to southeast. Adapted from Venturo & Huaman, (2013).

The architecture of this thin-skinned thrust system is characterized by faulted
detachment folds and associated kink-band hanging-wall anticlines, Figure 10. These
thrust faults commonly terminate in triangle zones in Paleogene-Neogene strata at the
leading edge of the fold-thrust belt (Espurt et al., 2011); (McClay et al., 2018a). The top
of the Ordovician-Silurian syn-rift sequence and the base of the Devonian-Mississippian
post-rift units host the basal detachment of the thin-skinned system in the Camisea sub-
basin, and this characteristic is the main difference with the northern sectors (Huallaga

and Santiago sub-basins).
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Figure 10 — Seismic attribute line (RMS x 90° Phase change) highlighting the structural
features and interpretation. The seismic line crosses the Sagari-Kinteroni
structure and shows the insertion of the basement deforming the sedimentary
sequence and producing triangle zones within the Cenozoic sequence. From
Zamora et al. (2019).

Currently two main ideas regarding the deformation in the hinterland part are
adopted by geoscientists Figure 11. On one hand, the hinterland part of the Camisea sub-
basin has been interpreted as a duplex system within Ordovician-Silurian strata and a
large displacement hinterland passive roof backthrust (Espurt et al., 2011). On the other
hand, (Gil Rodriguez et al., 2001); (McClay et al., 2018b) considered the hinterland of
the Camisea fold-thrust belt as a system of large inverted Precambrian basement fault
blocks that are uplifted and exhumed as the Andean deformation moved west from the
hinterland to the foreland, and transferred displacement onto the thin-skinned
sedimentary wedge at the edge of the basin. The last model implies much less shortening
in the Paleozoic sequence 28 km (McClay et al., 2018a) vs 53 km (Espurt et al., 2011),

and correlates better with the length of shortening transferred to the Camisea sub-basin
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(~23 km; Espurt et al., 2011). It is also mechanically more feasible (McClay et al.,
2018a).
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Figure 11 — Regional cross sections. (a). Regional cross section showing duplexing of the
Paleozoic strata, modified from (Gil Rodriguez et al., 2001); (Espurt et al.,
2011). (b). Regional cross section showing inverted domino-style basement
faults linking to thin-skinned thrust-related folds in the Camisea frontal fold
belt. From Torres & MaClay, (2014).
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3 THEORY

This section aims to clarify some mathematical, physical and statistics that are the
foundation for understanding the methodological stages of this work and their influences
on the results. Initially, a statistical concept called Bayes' theorem will be introduced,
which is the basis of the methods that will be used in this work, such as the application
of Ensemble Smoother with Multiple Data Assimilation for Stochastic Inversion and
Bayesian Classification for facies prediction using borehole log data and seismic
volumes. Moreover, the section will state and develop the mathematical fundamentals
bound up with data such as, poroelastic properties, facies and seismic data in order to get
an idea how these will be used in the methodology of the study.

3.1 Bayes’ Theorem

Understanding Bayes theorem is an essential part in this study, because the
process to link facies with a specific value of poroelastic properties could be done by this

method.

For explanation purpose, E represents a generic event and P(E) its probability.
For instance, E could state the occurrence of sand facies in a reservoir and P(E) the
probability to find this specific sand facies at a given location. Probability theory is based

on axioms of Kolmogorov:
Q) The probability P(E") of an event E is a real number in the interval [0,1]:
0<P(E)<1, (3.1)
(i) The probability P(S) on the sample space S is 1:
P(S) =1, (3.2)

(iii)  If two events, are mutually exclusive, then the probability of the union
E; U E, is the sum of the probabilities of the two events P(E;) and P(E,):

P(E{UE,) = P(E;) + P(E,), (3.3)

Based on these axioms, the probability of complementary event E = S\E, is given
by:
P(E) =1-P(E), (3.4)
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Since P(E) + P(E) = P(S) = 1, it is possible to derive that probability of the

union of two events, not necessarily mutually exclusive could be written as follows:
P(E, VU E;) = P(Ey) + P(E;) — P(E; NEy), (3.5)

Where P(E; N E,) is the probability that both events will happen. For mutually
exclusive events, the intersection of two events in the empty set (E; N E, = ©), and the

probability of the intersection is P(E; N E,) = 0.

A main concept in statistic and probability is the definition of conditional
probability, which explains the probability of an event based on the result of another

event.

Overall, the probability of an event can be defined more accurately if additional
data related to the event is available. For instance, seismic velocity depends on porosity,
rock composition and fluid saturation. Thus, if one of these properties is known, then the

probability of seismic velocity could be estimated.

Considering two events A and B, the conditional probability P(A|B) can be
defined as:

P(4, B) (3.6)

P(A|B) = O

Two events A and B will be independent, only if the join probability P(4, B) is
the product of the probability of the events P(4,B) = P(A)P(B). Thus, given two
independent events A and B, the conditional probability P(A|B) could be reduces as

follows:
P(A|B) = P(4), (3.7)

A common tool to estimate conditional probabilities is Bayes’ theorem using the
conditional probability P(A|B) as a function of the conditional probability P(B|A), which
should be easier to calculate in many geological applications. Therefore, Bayes’ theorem

states that the conditional probability P(A|B) is given by:

P(B|A)P(A) (3.8)

P(4|B) = P(8) x P(B|A)P(A),

Here P(A) is the probability of A, P(B|A) is the probability of the event A given
the event A, and the P(B) is the probability of B. The expression P(A) represents the
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prior probability of A since it measures the probability before taking into account

additional data associated with the event B.

Additionally, P(B|A) is considered the likelihood function of the event B to be
observed for each possible outcome of the event B. The term P(B) represents the minimal
probability of the event B and it is a normalizing constant to ensure that P(B|A) satisfies
the axioms. The resulting conditional probability P(B|A) is also named the posterior

probability of the event A, since it is computed based on the outcome of the event B.

3.2 Ensemble-Based Methods

The main goal of this seismic reservoir study is to predict the elastic properties
from seismic data. Overall, inverse notation regarding seismic reservoir characterization

could be written as follows:

d=f(m)+e (3.9)

Seismic data is represented by d, elastic attributes is represented by m =
[V,Vep]™, which could be P-wave velocity, S-save velocity, and density. Finally, the
seismic forward model is represented by f, mapping the elastic attributes m into seismic

data d, and the error represented by e.

This notation aims to describe the main goal of reservoir characterization which
is to estimate the unknown variables m from the seismic measurements d, considering
that the forward model is the best possible physical relation between model parameters
and data. Keep in mind that physical relations f in equation (3.9) are often nonlinear,

such as the full Zoeppritz equation.

In the study, a model-based inversion method was used in which, first it was built
an ensemble of initial reservoir models of physical properties as the prior (V,, V; and
Density); next, it was calculated the corresponding elastic attributes using a well-known
equation (Zoeppritz); then it was computed the synthetic seismic response, and evaluate
the misfit between the synthetic and the observed data to update the prior models until

convergence.
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This inversion method uses an algorithm based on the ES-MDA (Ensemble
Smoother with Multiple Data Assimilation) method where the mismatch is estimated by
re-parameterized of the data in a lower-dimensional space using SVD (Singular Value
Decomposition) in order to optimize the procedure (Golub & Van Loan, 2013). This
method is characterized by two things: the way the algorithm inverts the data and the way
the algorithm optimizes the process. It applies nonlinear models to invert the properties

of interest, and it iteratively performs a Bayesian updating step of the model ensemble.

Kalman filter allows to derive different ensemble-based data assimilation

methods, one of them is the Ensemble Smoother (ES).

3.2.1 Ensemble Smoother with Multiple Data Assimilation

Due to the undesirable computational cost of Kalman Filter for nonlinear relations,
the ensemble-based method uses an ensemble of models to approximate the model
covariance with the empirical covariance of the ensemble members. The Ensemble
Smoother (ES) globally update the prior model by simultaneously assimilating the
measurements (Leeuwen & Evensen, 1996), using the same Kalman Filter equation each

ensemble member is updated (Emerick & Reynolds, 2013):
mi' = m{ +R(d; - d) (310
Fori =1,..,N_e where N_e are the numbers of ensemble members, u and p

denoting the updated (current iteration) and prior (previous iteration) variables

respectively and K represents the Kalman gain matrix obtained from the ensemble as:
T — -1 A1
K = 2, (Chy — Ca) (1)

Here Cﬁld represents the cross-covariance generated by the prior vector of model
parameters mP and the corresponding predicted data d?, Cl, express the Ny x Ny
covariance matrix of d”? (N, is the number of assimilated data), and d” plays the role of a
stochastic perturbation of the observed data sampled derived from a gaussian distribution
[(WV(d,C)q) where d represents the N; dimensional vector of observed data and Cq4
represents the N; x N; covariance matrix of observed data measurement errors. In order
to enhance the convergence, multiple times data assimilation should be performed in the
ES-MDA (Emerick & Reynolds, 2013).
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The equation (3.10) could be assumed as a Bayesian updating step based on the
assumption that the model vector m is Gaussian. Due to the nonlinearity of the forward
operator, the covariance matrices could not be computed. For this reason, an
approximation of these covariance matrices is done using the empirical covariance
estimated from the ensemble members, equation (3.11). The ES-MDA could be
considered as a single Gauss-Newton iteration with a full step and an average sensitivity
matrix obtained from the prior ensemble. By this means, multiple smaller corrections in
the ensemble are executed as opposed to large Gauss-Newton demanding correction. Wu
et al. (1999) improved the ES convergence applying at each iteration of ES-MDA an
inflation parameter alpha () to the data error covariance matrix for the purpose of an

alleviating parameter for the model variations.
Two main steps resume the ES-MDA algorithm:

1. Determinate the number of iterations and the inflation parameters oc; for
i =1, ..., N following the notation Zﬁ"zlai =1
1

2. Once N was defined, foreach i = 1to N:
e First, run the forward prior models and calculate the predictions

{d"},,.. n, for each ensemble member.

e Second, generate a stochastic perturbation of each ensemble
member as follow d=d+./a;-cq.Z4, considering the
approximation zg~N(Iy, ).

e Third, run an iterative process in the ensemble using equation 10

and 11 considering the replacement of C,; by «;C,.

The reduction of mismatch between the data and predictions is updated for each
model of the ensemble. As a result, multiple model realizations are built that validate the
measurements. Moreover, uncertainties which are not available with other techniques can

be quantified by the covariance matrix of the updated ensemble members.

Unlike other petroleum engineering and weathering applications which could
demand a large computational cost than the seismic and rock-physics forward models
(Liu & Grana, 2018), the only one drawback of the method for the inversion of large
seismic surveys is that the number of ensemble members (models) is much smaller than

the numbers of observation, this could yield a model with underestimated uncertainty. To
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overcome that problem, the method applies the SVD as a data order reduction method to
re-parameterize the seismic data into a lower-dimensional data space, and then perform
the ES-MDA to update reservoir models by assimilating the re-parameterized seismic
data.

3.3 Bayesian Classification

It is a statistical method which gives us the versatility to provide the most likely
facies classification as well as the posterior probability that could be used to quantify the
uncertainty is quite robust. Bayesian classification or also called Bayesian decision is a
non-iterative method that estimates the facies posterior probability using prior
information about the facies model with the likelihood function that connect available
data to the facies definition (Grana et al., 2021).

For instance, at a given location, a vector d of measurements of continuous
variables, such as geophysical properties is available, and the goal is to estimate the
conditional probability P(w|d) and the corresponding most likely facies 7. The
assessment of P(rr|d) can be done using Bayes’ theorem equation (3.8) as follows:
Pt =k)P(r=k)  P(d|lr=k)P(r=k) (3.12)

P(d) F_ P(d|m = h) P(m = h)

P(r = k|d) =

For a specific number of facies k = 1,...,F, where F is the number of facies. In
equation (3.12), P(m|d) is the corresponding likelihood function that links the measured
data to the facies definition, P(m) is the prior model representing the prior model about
the facies distribution, and P(d) is a normalizing constant that ensures that P(m|d) is a
valid probability mass function. At each location d, the most likely facies 7 is then

obtained by operating the maximum of probability P(rr|d):
#t = argmaxy_y, P (1 = k|d)
Considering all the possible values of the facies .

If the goal is to predict the most likely facies 7 conditioned on the measured data,
then it is not necessary to compute the normalizing constant P(d), because of the
numerator in Eq. (3.12) is proportional to P(rr|d). On the other hand, if the goal is to
estimate probability of occurrence about facies distribution, then the normalizing constant
P(d) should be calculated.
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It is common practice in geology to assume that distribution of the data, in each
facies, is a multivariate Gaussian distribution P(d|m) = N(d; Hajms de), where the
means pg, and the covariance matrices X, are facies-dependent and are often

calculated from a training dataset including borehole data or core measurements. Under

this assumption, the conditional probability becomes for k= 1,...,F:

N (d; i Zape )P (= k) (3.13)
P N (d; apn, Zan)P(m = h)

P(r = k|d) =

3.3.1 Bayesian Facies Classification

Overall, Bayesian facies classification is, basically, the application of equation
(3.13) considering the classes k by facies and d by elastic parameters, property of

reservoir or profile that you want to use for classification.

These facies can be lithological, electrofacies, flow facies and/or others, so that
the greater the separation between the PDFs of each facies, the better the classification
result could be. Thus, here in the study a scenario with two facies (reservoir and non-
reservoir) aim to predict the two groups of facies given two available measurements of
acoustic impedance (I,) and V, /V; ratio. In this scenario, equation (3.13) can be rewritten

as form:

P (I,,,Z—'s’ T = facies) P(m = facies) (3.14)

P\ = facies|I ﬁ =
= p'Vs - P(I ﬁ
Py

3.3.2 Kernel Density Estimation

In most cases available measurements do not follow a multivariable Gaussian
distribution; therefore, the adoption of non-parametric approach for the estimation of the

conditional probability P(r|d) could be a suitable option.

Following the idea, the study estimates the distribution of P(r|d) for k=1,...,F

using Kernel density estimation (KDE) in a multidimensional domain. To be more
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specific, KDE tends to honor data morphology distribution instead of parameters
(Silverman, 1986), it means that kernel estimation (blue line) is governed by the

contribution zone of individual kernel sampling (red dash line) Figure 12.
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Figure 12 — Kernel density estimation constructed with six individual kernels (red dashed
curves), the kernel density estimates the blue curve. The data points are the
rug plot on the horizontal axis.

Kernel density estimation is governed by the following equation (Silverman,
1986) & (Bowman & Azzalini, 1997) :

o) = n—lhznl: k(2 ;Xi),

Giving equal weight to all points X3, ..., X,, and n the sample number from some

(3.15)

univariate distribution with unknown density £(x) at any given point x, K is the kernel
which calculates the distribution morphology, the bandwidth h > 0 also called smoothing

parameter.

The study extends the classification method to a set of multiple measurements at
different depth locations and applies the Bayesian facies classification based on kernel
density estimation for PDFs to a set of borehole measurements sampled. The two well

logs variables at borehole location include measurement of acoustic impedance I,, and

V,/V; ratio as well as reference facies classification.

At each location d, it is assumed that prior probabilities and likelihood functions

are uniformed. The Bayesian classification is applied sample by sample to calculate the
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posterior probability of facies at each location in the interval. Then, the facies with the
maximum (chance) probability, are predicted at each location.
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4 SEISMIC QUANTITATIVE INTERPRETATION

Recent advances in seismic acquisition and processing have led to enormous
progress in reservoir characterization. Over the last several years, our understanding of
seismic rock properties and our ability to model those properties V;,, V; and density, have
improve substantially (Vernik, 2016). This, because Seismic quantitative interpretation
assists to understand the relationship between rock properties and elastics parameters.
Also, some techniques allow to obtain the non-uniqueness of the solution, using
probabilistic methods that aim to estimate the most likely model as well as the uncertainty
associated with the predictions (Grana et al., 2021). The main activities related to this
area are pre-stack seismic conditioned, seismic inversion, properties and facies

modelling, Rock Physics, and 4D Seismic.

4.1 Seismic Inversion

Seismic reservoir characterization aims to estimate elastic and petrophysical
properties, such as P-wave and S-wave velocities, density, facies, porosity, clay volume,
and fluid saturations, from seismic and borehole log data, through elastic wave
propagation and rock-physics relations. Traditionally, seismic inversion refers to the

estimation of elastic properties from seismic data (Doyen, 2007).

Any prediction regarding an Earth’s physical property could be approximated by
using a theoretical model aiming to explain the problem, and the process can be done
using a forward modeling which generally requires linear or non-linear operator for
accurate solution depending on the complexity. Therefore, seismic inversion aims to infer
the model parameters of the system in studies that give rise to that solution; (Aki &
Richards, 1980), (Rusell, 1998), and (Sen & Stoffa, 2013). The seismic inversion
approaches can be divided into two groups considering the algorithm: the deterministic

(matrix inversion) and probabilistic also named stochastic (Bosh et al., 2010).

In the first group (deterministic), these methods are relatively straightforward to
generate and are based on the minimization of the difference between a modelled seismic
trace and the actual seismic trace. However, these types of inversions are often smoothed
results, representing a best estimation within the limits governed by the bandwidth of the
seismic data. For instance, areas where the reservoir layers thickness is much lower than

about % of the seismic wavelength the resulting inversion could be inaccurate for
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quantitative interpretation (Simm & Bacon, 2014). Band-limited, colored inversion,
sparse-spike and model-based are the most important and widely used deterministic

algorithms for post-stack seismic inversion (Azevedo & Soares, 2017).
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Figure 13 — Illustration of sparse spike trace inversion showing how the inverted Al trace
is a blocky simplification of the well impedance. From Simm & Bacon,
(2014).

Despite the well-known and widespread use of these deterministic methods, the
quantification of uncertainty for deterministic methods is restricted. The only way to
assess the uncertainty is by a linearization around the best fit inverse solution. For this
reason, highly non-linear inverse problems such as pre-stack seismic inversion in
complex geological environments could not be accurately resolved using the

deterministic approaches (Tompkins et al., 2011).

In the second group (stochastic), Bayesian and Geostatistical approaches could be
included (Tarantola, 2005). However, in terms of computational requirements these
stochastics approaches are much more demanding than deterministic methods (Bosh et
al., 2010). To begin, the first stochastic method mentioned Bayesian guarantee the
propagation of the uncertainty guide by the prior probability distribution of data (e.g.
well-log data), and extrapolated to the probability distribution of the model parameters
space (Grana et al., 2012). Once the framework is constrained, the linearity assumptions
of the deterministic possible solutions are overcome (Buland & Omre, 2003).
Nevertheless, the uncertainty evaluation in this method is clearly conditioned on the
parameterization of the inverse problem such as, the spatial continuity pattern and the

prior distribution (Scales & Tenorio, 2001). Continuing with the stochastic methods,
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Geostatistical approaches use a probability density function (PDF) on the model
parameters space to resolve the inverse solution (Bosh et al., 2010). Generally, the
sampling of the model parameters to reach an inverse solution is made by Monte Carlo

or geostatistical sequential simulation taking into account global optimization algorithms.
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Figure 14 — Shows the P-wave, S-wave and density solution from a Linearized Bayesian
Inversion in the in-line 1627. From Buland & Omre, (2003).

Overall, stochastic approaches could get decent seismic inversion results, but
often in the case of using the complete Aki-Richards equation the approximation could
not deal in appropriate manner for not accurately seismic processed angle (above critical
angle), and in the rock-physics domain could fail for highly nonlinear models such the
soft sand model or homogenous fluid mixtures (Grana, 2016). As a consequence, for
nonlinear inverse problems obtaining a close-form solution is difficult, unless the
adoption of a numerical method. For this reason, in the case of non-linear inverse
problems, methods such ensemble-based can be capable of obtaining outstanding results.
Using a pre-stack data from particular area of the Norne field in North Sea (Liu & Grana,
2018) obtained excellent result in the seismic inversion with the ES-MDA methodology
and even compared to a Bayesian AVO linearized approach that use the same set of data.
For this reason, this study adopts the same approach to get the most reliable inverse results

of the petro-elastic properties and related these with a facies distribution.
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Figure 15 — Inversion results of elastic properties, from top to bottom: P-wave velocity,
S-wave velocity, and density (the black arrows indicate the well location).
From Liu & Grana, (2018).

Latest computational advance have emerged many other seismic approach such
as those based on machine learning algorithms, which used a kind of optimization
procedure to guarantee convergence with the known seismic amplitudes and in many
cases constrained by a geological information. For example, (Alfarraj & Ghassan, 2019)
propose a workflow using a neural-network-based inversion model to invert seismic data
for elastic impedance (ET) using well-log data to guide the inversion result. In the case of
prior information is sparse, for instance where seismic events corresponding to reflectors
of interest remain to be identified, Simulated Annealing inversion could deal with this
sparsity of data to resolve the seismic trace inversion problem (Mosegaard & Vestergaard,
1991) using the global optimization technique of simulated annealing to provide results

that best-fit the seismic guided by an input model.
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4.2 Seismic Facies Classification

Seismic facies classification was applied by (Mukerji et al., 1998) using data from
North Sea. The acoustic impedance (1,,) and elastic impedance (I,) from seismic inversion
were used to estimate the probability occurrence of each facies. The authors applied three
different approaches for facies classification and one of them is similar to what is called
Bayesian classification. The estimation of the conditional PDFs P(facies|l,, ;) was
obtained from seismic inversion results using the near and far offsets at the wells location
and the facies already known of these wells. This leads in a tri-variate distribution with
two continuous variables (I,, and I5) and a categorical (facies). These distributions were
estimated using a non-parametric approach (kernel density estimation). Based on the
authors’ comments, the results were satisfactory not only for obtaining the most probable

facies, but also for the probability of each of them, enabling an uncertainties analysis.

Recent studies in Brazil have been published applying this methodology to
carbonates of the pre-salt (Texeira et al., 2017); (Penna et al., 2019); (Penna & Lupinacci,
2020). For instance, Texeira et al. (2017) presented a 2D Bayesian classification to
discriminate carbonates with good porosity, closed carbonates and clayey-carbonates
using the elastic parameters of acoustic impedance (I,) and V,/V; ratio which were
generated from elastic inversion. The first parameter proved to be sensitive to porosity,
while the second proved to be more sensitive to mineralogy, enabling the classification
of these three types of facies using seismic data.

Also studies where different kinds of gaussian distribution (Single Gaussian and
Gaussian Mixture) were performed to link between elastic and petrophysical properties,
each of these gaussian components is related to different geological lithofacies. Then a
Bayesian approach for seismic inversion to estimate acoustic, impedance and lithofacies
of subsurface conditioned to post-stack seismic and well data were computed (Figueiredo
etal., 2017).
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Figure 16 — Probability of reservoir facies and the more likely facies using two different
distribution approach; Single Gaussian in A, B and for Gaussian Mixture in
C, D. From Figueiredo et al. (2017).

Another common approach is the use quantitative seismic interpretation, and more
specific Rock physics which establishes the relationship between elastic attributes and
reservoir properties. Grana & Dvorkin (2011) carry out a seismic elastic inversion on
seismic data to arrive at volumes of I, and I, then a rock physic model is made at well

to link the elastic properties to different rock and fluid properties.
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Figure 17 — Workflow of seismic facies classification. (a) Seismic data are used to obtain
the probability elastic attributes, such as the P- and S-wave impedance, using
a Bayesian linearized elastic inversion. (b) A rock physics model is fed into
the resulting elastic attributes volumes to produce the volumes of rock
properties probabilities. (c) Rock facies are classified at a well, and this
classification, together with rock properties, is used to produce a facies

probability volume. From Grana & Dvorkin, (2011).

An application of Bayesian facies classification to igneous rock identification
using stochastic seismic inversion in the presalt interval of Santos Basin was presented
by Fernandes et al. (2024). The study used the ES-MDA algorithm to get an acoustic
impedance seismic inversion. Then, facies related to igneous rock using a priori
probability were modelled, Figure 18. The results are in good agreement with the ones

observed in the wells according to authors.
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Figure 18 — Seismic section crossing Well B showing: (a) the 1, of stochastic inversion
from realizations P50, and (b) their respective igneous occurrence probability
estimated in Bayesian classification from P50. The lime green line represents
the Pre-Jiquia Unconformity, the blue line is the Pre-Alagoas Unconformity,
and the magenta line is the Base of Salt. Adapted from Fernandes et al.
(2024).
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5 METHODOLOGY

The seismic quantitative interpretation of siliciclastic reservoirs in this specific
area of the Camisea sub-basin uses two kind of data original and interpreted (derived from
a second process). The original data consists of well-log data and conditioned pre-stack
seismic data. Moreover, the interpreted data consists of an accurate seismic well tie,
seismic horizons interpretation, generation of low frequency models of each property (I,,,
I; and density), and facies definition. The workflow of the seismic quantitative
interpretation is represented in the Figure 19. The seismic interpretation was made using
a Petrel software, and both the stochastic seismic inversion and seismic Bayesian

classification was made using a Python open-source programing language.

Angle stacks at

8 Well-log data '7
various angles l | Yel-loe
Seismic well-tie and
wavelet extraction

Upscale well-log

l (Backus average)
Seismic Low frequency
interpretation model building
Facies definition

—ﬁ Stochastic inversion }(— PDFs building

Seismic
Bayesian facies
classification

Figure 19 — Schematic workflow of the seismic quantitative seismic interpretation apply

to the reservoir in Kinteroni field.

A careful seismic well tie initiates the study in order to get more reliable relation
between seismic and well log data, this process identifies the best amplitude reflections
related with the intervals of the main reservoirs. Moreover, a crucial step was the upscale
of well data using the Backus algorithm (Backus, 1962) with a frequency of 80 Hz and 5
meters sampling. The seismic crop area has three wells which are located along the
highest part of the structure, all of them were used in the building of low frequency models
using a geostatistical technique with both migration velocities and well velocities data
(Soares & Azevedo, 2018). To point out, the seismic crop includes 560 milliseconds in
two-way traveltime thickness, 684 inlines (inline) and 285 crosslines (xline), with vertical

sampling rate of 2 milliseconds and lateral sampling rate of 15 meters.
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By this time, stochastic non-linear seismic inversion will be performed using
previous information using the ES-MDA algorithm in time domain. After that, using the
upscaled well-log data of I, and V, /V; ratio conditioned to facies interpretation a PDFs
was built. Then, the same PDFs used the seismic inversion results to carry out the

Bayesian facies classification.

A detailed description of each part will be addressed in the following sections,
such as seismic well-tie, low frequency model building, stochastic non-linear seismic

inversion application and Bayesian facies classification.

5.1 Seismic Well Tie

In this subtopic the Seismic Well Tie process is described, the data of three Wells
have been reviewed and analyzed during this stage. A comparison of sonic logs and
checkshot information for each one of the calibration wells (K1, K2 and K3), shows that
velocity trends were properly measured and corrected especially in the target zone of the

study.

Figure 20 shows panels for each calibration well used in this study where sonic
velocities are display in blue while checkshot in grey line colored by its value range. The
group of horizontal lines represents different tops at the target zone framed between
Lower Chonta at the top and Copacabana at the bottom of the sequence. An important
observation is that the Nia, and Noi sandstones reservoirs are characterized by low
velocities compared to high velocity trend characteristic of shale rocks. Hence, low

impedance value is expected to be associated with sand lithology.
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Figure 20 — Comparison between sonic velocity (blue line) and checkshot interval
velocity at K2, K1 and K3 wells

COPACABANA

In addition, an analysis of the poroelastic properties helps to determine the
limitations in resolution due to frequency content of the seismic (PSTM seismic data in
this case). Such analysis is represented also as log curves but at a resolution compared to
seismic; also known as log curves at seismic scale. The results help to determine the

degree of detail that we can expect to achieve through methods of seismic inversion.

The following Figure 21 show the poroelastic curves such as V,, Vs, L,, Is, V,/Vs
and density at seismic scale (blue) and log scale (grey) for K2 well. Seismic scale log
curves have been generated based on dominant frequency of PSTM seismic data using
the Backus average calculation, and not as simple smoothing of the curves. These sets of
curves have been provided as input in the seismic inversion process. Note that the high
frequency detail observed at log scale is largely reduced in logs at seismic scale. Also, the
Figure 21 shows tops of relevant units within the zone of interest from Upper Nia to
Copacabana. The Backus average shows important characteristics in the poroelastic curve.
For instance, the anhydrate layer above and shaly carbonate layer bellow Lower Nia is
characterized as a high impedance interval but with a much lower increase in shear velocity
that results in a characteristic decrease in V,/V; ratio associate mostly to sand intervals,

particularly appreciate at well K2 (figure 21).
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Figure 21 — Poroelastic curve at seismic scale (blue) and log scale (grey) for well K2

COPACABANA

Post-stack calibration was performed for each calibration well included in the
seismic crop volume. The methodology used sonic, density logs and checkshot
information. A 25 Hz zero phase Ricker wavelet was used as a first approach to generate
a synthetic trace and then replaced by an average of statistical wavelet from K2, K1 and
K3. In order to evaluate the process, a cross-correlation method is used to compare the
resulting synthetic trace to a composite trace that is extracted along the path of the

deviated wells.

All statistical wavelets extracted from the three wells are almost identical, Figure
22 shows a comparison between the average statistical wavelet extracted from the seismic
stack and Ricker wavelet. This allows for a closer reproduction of seismic character in

the synthetic trace at the zone of interest.
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Figure 22 — Comparison between the statistical average from three wells (blue) and Ricker
wavelet 25 Hz (dashed black line)

Overall, very little adjustments were introduced to checkshot curves in order to
match reflections with corresponding well tops. Special emphasis was applied to match,
Lower Chonta, Upper Nia, Middle Nia, Lower Nia, Shinai, Lower Noi and Copacabana.
In particular, Lower Noi and Ene reservoirs were comprised within half a cycle of seismic

reflection due to their thickness are bellow seismic resolution.

Figure 23 shows a composite panel of log curves from left to right including
gamma ray, velocity, density, reflection coefficient, statistical extracted wavelet,
synthetic trace, extracted stacked trace from seismic data, and also geologic markers
(tops) are included. For the study purpose the extracted wavelet was carried out with a

statistical approach.
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Figure 23 — Composite panel showing different well-log curves, statistical average from
well K2, seismic amplitude at well location and synthetic amplitude from

well-log data.

In general, the K2, K1 and K3 wells show reasonable match between seismic and
synthetic trace. A method to evaluate the degree of correlation is the use of Pearson
correlation coefficient (PPC). For instance, the arbitrary seismic line of stacked data
where both the well path and synthetic is plotted in the Figure 24, also showing the PCC
value of 0.71. For reference, tops (white circle) and seismic horizons (black line) overlain
the arbitrary seismic line along the K2 well path. Observe an acceptable match of seismic

events between synthetic from K2 well and stacked seismic data.
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Figure 24 — Arbitrary seismic line along the path of the deviated well K2 showing the

match between seismic and synthetic log.

5.2 Low Frequency Model building

In this study, low frequency models for P- and S-Impedance, as well as for density
were required to be generated as prior information. The first approach to build a P-
Impedance model comes from the use of velocities from migrations (PSTM velocities),
where RMS velocities were converted to interval velocities using Dix approach. As a
quality control the Figure 25 includes from Lower Chonta to Copacabana horizons; also,
along the well path selected tops are displayed as reference (Upper Nia and Copacabana).
The displays showed that RMS velocity distribution is not conformable with geometry of

the geologic structure that amplitude information shows.
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Figure 25 — RMS seismic velocity does not follow geometry of seismic amplitudes, and
values of RMS are below real velocity from well-log data in the interval of

interest, warn and cool colors means high and low velocity respectively.

Extraction of interval velocity curves from PSTM velocity field at each calibration
well was done to check accordance with well data log and checkshot information. Figure
26 shows a composite panel of Kinteroni wells with different velocity profiles; sonic
velocity at well-log and seismic scale are shown in grey and light-blue respectively, RMS
velocity field from PSTM are shown in green and extracted velocities from interval

velocity field from PSDM processing are shown in red.

In general, extracted RMS velocity (green) or extracted interval velocity from
PSDM velocities (red) do not match closely the well measurements. The RMS velocity

seems to be underestimating and the interval velocity not to accurately adjust to wells.
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Figure 26 — Trend of RMS velocity from PSTM (green) and interval velocity from PSDM

Copacabana

(red) compared to well velocities at each Kinteroni well at well-log (grey) and

seismic (light-blue) scale.
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As a result of the quality control in velocity trends from seismic and well log data
that do not match the trends between them, a Low frequency model using geostatistical
modeling was used by combining both migration velocities (PSTM and PSDM) and well
velocities. The resulting low frequency velocity model provides a better match to trends
observed at each calibration well. Figure 27 shows in the left part extracted LFM acoustic
impedance curve (red), which overlays upscaled I, from well-log (black) extracted at
specific interval window for K1 well. Also, in the right part the LFM of I, at inline 716
and well K1 path and key tops (Upper Nia, Lower Nia, and Copacabana).
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Figure 27 — In the left part, upscaled well-log (black) and LFM (red) curves of I,. In the

right part, Low frequency model (LFM) of acoustic impedance in the inline

716 and well K1 path and key tops.

The modelling of the low frequency P-velocity model was the first step to build
all the suite of models needed for seismic inversion. The resulting P-impedance, S-
impedance and density low frequency models (LFMs) are based on a combination of
geostatistical modeling and rock physics trends that relate P and S velocity information
to density.

At this point of the study, conditioned angle gather stacks (conditioned in
waveform and spectra) have been generated, wells had been calibrated, wavelets have

been statistically extracted from conditioned angle stacks, and low frequency models
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were also built. Consequently, all the elements to conduct a Stochastic seismic inversion
were satisfied.

5.3 Stochastic non-Linear Seismic Inversion application

In this section, an explanation of the seismic inversion process based on ES-MDA
applied to a seismic reservoir characterization study in the Ucayali basin is described. The
available data for the study includes a set of well-log data, and three partial angle stacks
(near, middle, and far stack corresponding to 12°, 24°, and 36° respectively). Figure 28
shows the seismic inline 716 of the near, middle, and far angle stack across the well K1.
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Figure 28 — In the left part, an overlain of seismic partial-stacked extracted of near,
middle, and far trace with incident angles of 12°, 24° and 36° respectively at
[inline 716; trace 150] position, and in the right part the seismic inline 716,
from top to bottom: near angle stack (12°), middle angle stack (24°), and far
angle stack (36°).

The method consists in the use of stochastic nonlinear inversion framework of
three partial angle stacks (near, middle, and far) based on the ensemble smoother with
multiple data assimilation (ES-MDA) to estimate elastic reservoir properties with the
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measurement of the uncertainty. The stochastic seismic inversion process implemented

in the study can be described as follows:

® Generate an ensemble of N, initial models of elastic properties (P-wave
velocity, S-wave velocity and density) using geostatistical methods to
account for the spatial correlation related to the underlaying geological
continuity.

) Compute the elastic and seismic response (predicted data d?) for each
model in the initial ensemble using the full Zoeppritz equations.

® Re-parameterize the predicted data using SVD (Singular Value
Decomposition) and obtain a set of N, singular values AP and singular
vectors uP.

® Apply the ES-MDA algorithm with Equation (3.10) and (3.11) in
which the data d with the re-parameterized vector of singular vectors u, to

update the model parameters m.

m} = m! + Cf, (Cl, + €)' (W; — uf) (5.1)

Repeat steps from (2) to (4).

© After N iterations, generate the statistics (mean and covariance matrix)
of the posterior distribution of model parameters f,,,;;(m|d) conditioned

by the seismic.

Before to apply the seismic inversion process, seismic information should be

loaded and analyzed. In this case, a seismic crop was selected, which is a portion of a 3D

seismic survey and is available in Perupetro database (bancodedatos.perupetro.com.pe).

Another necessary input in the workflow was the building of the LFMs (P-wave

velocity, S-wave velocity, and density) using geostatistical techniques for this area based

on both migration velocities and smoothed well log data following the low frequency

trend of 0-8 Hz. The Figure 29 shows the LFM in time domain that was built in a specific

time window between Upper Nia Fm. and Copacabana Fm. as top and bottom

respectively. The coding workflow requires that pre-stack seismic volumes have the same

geometry of the LFMs of P-wave velocity, S-wave velocity and density.
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Figure 29 — Similar geometry of partial stacks and LFMs is required. The left part of the
figure presents the input (seismic partial angle stack) of the seismic inversion,

and the right part shows the low frequency models of (1, I, p) at inline 716.

Coupled with the average statistic wavelet from the Kinteroni wells, the
information is enough to run iterations on all traces seismic. To be more specific, the
whole workflow will be applied individually to each trace and then move on to the next
trace. The process needs the generation of vertical spatial correlation based on Monte
Carlo simulations (Dvorkin et al., 2014); (Fernandes & Lupinacci, 2021) to grab geology
patterns. In these simulations, a premise is considered that samples that are close in time
have better correlation. Thus, the tendency for samples far away from others is to become
less correlated. All of the above provides the possibility to introduce a geological
continuity premise to the simulations that are generated from random values.
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In light of the foregoing, the workflow of the seismic inversion begins with the
generation of 300 initial elastic models by stochastically sampling from the prior model
space. will be aborded in following section, the initial ensemble number of models is 250,
the retained singular values computed from the collocated seismic trace is 30, and the
number of updating iterations is 4. Overall, stochastic prior models converge to the actual
well logs and their means of the posterior ensembles shows a satisfactory agreement with

corresponding elastic properties.

The associated model uncertainty can be quantified using the pointwise empirical
variances calculated from the updated ensemble members. Compared to the synthetic
case, the results show a larger variability in the posterior realizations; furthermore, it is
noticed some inaccurate predictions of the elastic properties, fortunately in small portions
of the reservoirs. Such inaccurate predictions are probably due to the limited resolution,
low frequency (i.e. far angle stack) and low SNR of seismic data that do not allow to
capture the local variability of elastic properties in thin layers, as well as erroneous values
of density and sonic log data that does not match the real rock values, especially in the
layer with high content of shale that produce washout intervals. (Liu & Grana, 2018);
(Fernandes et al., 2024) present detailed studies where mathematical concepts were

covered.

The results of the seismic inversion were P-Impedance, S-Impedance and Density,
with P-impedance being the attribute with more accuracy and density the one with less
accuracy. Also another volume that was generated as the result of the pre-stack inversion
were V,/V;. At this stage of the study, we are ready to apply a Bayesian facies
classification and explore relationships between inverted elastic volumes and seismic

facies characterization inside the reservoirs.

5.4 Bayesian Facies Classification

The defined lithofacies in this study were based on information from well log and
core data. The main reservoir zones (Upper Nia, Lower Nia and Noi-Ene) present two
types of lithofacies sandstone and fine sandstone. Sandstone facies present good porosity
values, followed by fine sandstones which are considered reservoirs with medium to low
porosity values. The non-reservoir zones which overlie most of the reservoir facies are

composed of shale facies with content of carbonate and anhydrate.

58



A preliminary Rock physics approach allow to correlate poroelastic parameters
with facies. This analysis represented an important step in the reservoir characterization
(Ddegaard & Avseth, 2004). The main objective is the use of the relation using well log
data and then extrapolate that relationship using the seismic volume result from seismic

inversion such Ip, Is, and density.

The analysis of compressional and shear logs, which are derived from sonic logs
is a fairly routine to get a clue of trend lines related to specific facies such sandstone and

shale. Generally, trends of 1}, and V; are well defined because factors such as porosity,

pore shape and pressure tend to affect V, and V; similarly (Castagna et al., 2014).

Figure 30 shows acoustic-log V, and V; measurements of the three wells included
in the study (K2, K1 and K3) from Upper Nia and Copacabana formation top, which is
the reservoirs target colored by a type of facies. The dash line separates into two zones
the behavior of the measurements, above the line related to sandstones facies and the
bellow the line mostly related to shale, carbonate, and anhydrite facies. As a first glance,

the Crossplot indicates that both curves can be used to predict at least two groups of facies.
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Figure 30 — Crossplot of Acoustic-log measurements of 1, and V; of the K2, K1 and K3

wells colored by specific facies interpretation.
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Another valuable tool for both QC and interpretation purposes of well log data
,and in order to assess seismic detectability is the use of the Crossplot between acoustic
impedance I, and V,,/V; ratio (Jdegaard & Avseth, 2004), the Figure 31 shows these
curve colour coded based on the five populations defined in the Crossplot domain. A
noticeable behavior in the scatter data is the possibility to add a line bound which
separates the sandstones zone from the shale & carbonate zone. Additionally, an

anhydrate zone constitutes a small and clearly separate cluster in the high Ip.

Al and V,/V; estimates are among the typical outputs from elastic inversion of
seismic data, and this is the main reason for presenting this analysis to evaluate the
affordability to classify facies from seismic data, more specifically elastic inversion

results.
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Figure 31 — Crossplot of Acoustic-log measurements of I,, and V,/V; for the three wells

in the study (K2, K1 and K3) colour-coded by specific facies interpretation.

The probability density functions (PDFs) related to each facies were built at the
beginning using a Gaussian approach and then improved by the use of Kernel approach
to borehole log data upscale to seismic sample resolution (two millisecond). Additionally,
Kernel bandwidth was defined using the Scott’s rule (Scott, 2014). The Figure 32 shows

the PDFs of I, /V; ratio using density Kernel estimation where different degree of overlain
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between lithofacies can be observed. Nevertheless, a kind of two population reservoir and

non-reservoir related to sandstone and shale respectively can be identified.
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Figure 32 — Probability density functions (PDFs) of V,/V; ratio using density Kernel

estimation for lithofacies from Upper Nia to Copacabana formation

In the case of acoustic impedance (I,,) the PDFs show three different groups
related to a specific range of L,. In the Figure 33 can be identified a much bigger

population of sandstone facies that overlies a small portion of fine sandstone. Also,

carbonate and fine sandstone seems to be overlaid with the same density population.
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Figure 33 — Probability density functions (PDFs) of acoustic impedance (1,,) using density

Kernel estimation for lithofacies from Upper Nia to Copacabana formation.
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Bayes’s theorem is a fundamental concept in probability theory and statistics, the
posteriori distribution depends upon the priori probability of facies occurrence. A
common practice is to assign the same probability of chance for each individual facies

group. Thus, the posterior distribution will be defined by the PDFs.

The first attempt at least with well-log data demonstrated the possibility to
characterize reservoir and non-reservoir, the strategy to merge all lithofacies into two
groups is supported by the possibility to be predicted using Baye’s theorem according to

the aforementioned crossplot analysis in Figure 30, Figure 31, Figure 32 and Figure 33.

The analysis concludes that both facies group, such as reservoir a non-reservoir
can be separated using both elastic properties I,, and 1, /V; ratio, Figure 34. Moreover, the
PDFs for both facies groups using the elastic properties seem to be separated from each

other and also follows the line bound previously discussed.

Reservoir
2.4 4 ® Non-reservoir

Non-reservoir

2.2 1

o
=]
L

Vp/Vs Ratio
=
er]

1.6 1

1.4
Reservoir

zone

1.2 T T T T T T T
4 6 8 10 12 14 16 18 20
Acoustic Impedance (km/s.g/cc)
Figure 34 — Crossplot of Acoustic-log measurements of I,, and V;, /V; for Kinteroni wells
colour-coded by reservoir and non-reservoir facies interpretation, and the

PDFs considering both variables.

A visual result of the Bayesian facies classification in the K1 is shown in Figure

35, the reservoir and non-reservoir facies are well predicted. The prediction supports the

62



possibility to obtain a framework of reservoir and non-reservoir zone which is also well

defined using only seismic amplitude interpretation due to seismic amplitude quality.
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Figure 35 — Bayesian facies classification of K1 well using upscale Ip and Vp/Vs shows

excellent results in the posterior facies.

Overall, Bayesian facies classification presents excellent results validated by the
confusion matrix values in the three wells. According to the confusion matrix, the
reservoir facies obtain 0.86 of true positive which means 14% of facies reservoir were
incorrected predicted. On the other hand, the non-reservoir facies get 0.80 of true negative

which means 20% of non-reservoir were incorrected predicted.
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(a) Confusion matrix for Kinteronis Wells (b) Observed Prediction Results
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Figure 36 — The graphic shows (a) Confusion matrix of the result in the three wells of

Kinteroni, (b) observed predictions results.

Despite the previous excellent results, the prediction of reservoir from non-
reservoir facies could also be related to a geological framework. For instance, more than
95% of content in Lower Nia could be considered reservoir facies, which means if the
geology framework were accurately defined as it is, it would be easy to say that at least
95% could be related to reservoir facies. A more challenging task and innovative will be
the possibility to characterize at least in the two facies (sandstone and fine sandstone) the
reservoir facies which be restricted to the Upper Nia, Lower Nia, and Noi-Ene zones.
Figure 37 shows the crossplot of acoustic-log measurements of I, and V,, /V; for the three
wells in the Kinteroni area (K1, K2 and K3) considering only data from the reservoir
zones. Data points are colour-coded by reservoir facies (sandstone and fine sandstone),
grey color represents data outside the upscale process. The resulting PDFs will be used
to predict these two group of facies in the reservoir intervals using the seismic inversion

outputs.
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Figure 37 — Crossplot of acoustic-log measurements of I,, and V, /V; for Kinteroni wells
colour-coded by reservoir facies (sandstone and fine sandstone), and the
PDFs considering both variables, grey points represents well-log data outside

the upscale process.
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6 RESULT AND DISCUSSION

The whole workflow gives different kinds of outputs and results that will be
described in this section. Figure 38 shows the seismic crop, wells localization, and seismic
lines. In order to explain the geological and structural complex of the area an arbitrary
seismic line 1 along the three wells in Kinteroni field (K2, K1 and K3) from west to east
are presented. However, the focus area in this study is a seismic crop (blue polygon) that
contains the K1, K2 and K3 wells. Inside the seismic crop, two arbitrary seismic limes

and a crossline along their well surveys are presented as well.

The objective of the selection of these seismic limes is to show variability of rock
properties using the seismic inversion results combined with a Bayesian facies

classification approach.
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Figure 38 — Show the seismic crop where is possible to observe the highest part of the
anticline and the seismic lines (red lines) to analyze the stochastic seismic

inversion and the Bayesian facies classification results.
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6.1 Quantitative Validation of Stochastic Inversion

6.1.1 Correlation Coefficient of Wells — Synthetic case

At the beginning of study, a preliminary 1D approach was done to demonstrate its
feasibility using the set of wells from K2 well. Moreover, where both deterministic and

stochastic seismic inversion were done to analyze its results and evaluate its advantage.

This real case contains several layers of clastic reservoir separated by zones of
clay. The clastic reservoirs are filled with gas with a low percentage of water saturation
and a high porosity brine layer in the base. The other important information is shown in
the left part of Figure 39 where an overlain of seismic partial-stacked extracted from near,
middle, and far corresponding to three different range of incident angles: 12°, 24° and
36° respectively at [inline 716; trace 150] position. On the right part, the middle partial-
stacked traces of inline 716 is presented where a peak and trough is represented by blue

and red color respectively.

Trace 150 Middle stack Amp

” 4 |

Time (s)

50 100 150 200 250
Trace number
Figure 39 — In the left part, an overlain of seismic partial-stacked extracted of near,
middle, and far trace with incident angles of 12°, 24° and 36° respectively at
[inline 716; trace 150] position, and in the right part the middle partial-stacked

traces of the inline 716.
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The numbers of initial models of P-wave velocity, S-wave velocity and density
generated were 300. Those prior models were stochastically sampling from prior model
space, which represent the initial ensemble in the workflow. To grab the geological
behavior of the underlaying continuity of the area, a vertical correlation of the model
parameters was included. In the study, an exponential variogram was selected with a
correlation range of 30 meters. The set of initial models is presented in the Figure 40 and

it is clear that the model values cover the entire model space.
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Figure 40 — Prior elastic models, from left to right: P-wave velocity, S-wave velocity, and
Density (black curve represent the actual well log data, grey curves represent
200 prior models, red curves present the mean of the prior models)

For each prior ensemble model of the elastic curves the full Zoeppritz equation is
used to associate reflectivity coefficients and generate the corresponding synthetic
seismic trace by convolving the wavelets and the reflection coefficients. Continuing with
the workflow, a re-parameterization of the measured and predicted seismic data into lower
dimension space by using SVD is applied to improve the computational time consuming.
Then the ES-MDA algorithm is applied to the reduced data space to iteratively update the
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prior poroelastic models. In this specific case the algorithm only needs to assimilate the
data 4 times to get a reasonable match. The model of elastic properties is updated in the
domain (-o0, +0), the Figure 41 shows a reasonably good match between measurements

and posterior result.
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Figure 41 — Posterior elastic models, from left to right: P-wave velocity, S-wave velocity,
and Density (black curve represent the actual well log data, grey curves
represent 200 prior models, red curves present the mean of the posterior

models)

There are several ways to measure the accuracy of a seismic inversion, linear
correlation and room mean square error (RMSE) of the true model. In this case Pearson
correlation coefficient (r) estimation was used to validate the uncertainty quantification

in the posterior Table 1.

Pearson correlation (r)

Well Stochastic |Deterministic
K1 0.76 0.69
K2 0.7 0.68
K3 0.57 0.48
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Table 1 — Shows the comparison between the two performed seismic inversion
(Stochastic and Deterministic) using the upscaled well-log (time domain) of
K1, K2 and K3 wells.

The ES-MDA parameters choices and SVD method have direct implications in
the seismic inversion result. For instance, the alternative proposed inversion depends on
the number of iterations N, the number of truncated singular values Ns, and the number
of ensemble members Ne. In this particular study, N was selected to be 4 after due to N>4

shows an improvement in the RMSE but a substantial decrease in the coverage ratio.

After several testing, 30 singular values were retained due to higher values does
not impact the seismic inversion. Therefore, for lower values of singular values, the
RMSE increases and the correlation decreases. In general, the larger the number of Ne,
both the number of models and the computational cost increases. For this reason, after

some testing (Ne = 200, 250 and 300) Ne equal to 250 was selected as a favorable choice.

The study also compares the ES-MDA to the standard Bayesian linearized AVO
inversion which is a well-known seismic inversion technique proposed by (Buland &
Omre, 2003). This comparison uses the same well log dataset and seismic data from the
three angle stacks: near, middle, and far stack with incident angles of 12°, 24° and 36°
respectively. The inversion results by applying the ES-MDA nonlinear inversion (Figure
41) measured against to the Bayesian linearized AVO inversion (Figure 42) seen to
recover better the true well logs, implying a better accuracy of our proposed method. A
better result with the proposed method using ES-MDA is supported by the nonlinearity
of seismic forward models for large acquisition angles. Certainly, linearization of the
reflectivity coefficient expression is generally accurate for small angles, but inaccurate

for large angles where the exact model becomes nonlinear (Liu & Grana, 2018).
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Figure 42 — Standard Bayesian linearized AVO inversion result, from left to right: P-wave
velocity, S-wave velocity, and Density (black curve represent the actual well

log data, red curves present the mean of the posterior models)

An acceptable way to make a quantitative correlation was through the Pearson
correlation coefficient using the upscale acoustic impedance of wells compared with the
seismic inversion results. Wells inside the crop have acceptable values of the Pearson
correlation coefficient (r), K3 has the lowest values due mainly to the nearly position to
a fault reverse plane which reduces the signal of seismic reflections. Thus, by comparing
the inversion results, the proposed inversion method using the ES-MDA algorithm
recovers in better way the true well logs, indicating a better accuracy of our proposed
method, Figure 43.

In the study, one of main factors that improve the seismic inversion results
according to the validation method was the conditioned log data used in the seismic well-
tie. On the other hand, a reduction in the coefficient of correlation is closely linked to the
chosen seismic inversion parameters and maybe erroneous well log data for wellbore

condition.
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Figure 43 — The left part of the figure presents the input (seismic partial angle stack) of
the seismic inversion, and the right part shows the outputs (1, I, p) of the

seismic inversion of the inline 716.

6.1.2 ES-MDA Parameters

6.2 Reservoir Characterization

The study focuses on four main zones the Upper Nia, Lower Nia, Noi and Ene
formation, which are the main reservoirs in terms of gas accumulation. For this reason,
facies in those reservoirs should be accurately mapped. The Ene Formation,
stratigraphically above Copacabana formation is considered as a fluvial environment due

to its genesis, the contact between them is a well-known discordance in the region (Pefia
etal., 2018).
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Above Ene formation is deposited Noi formation, which could be divided into two
stages of Aeolian system. The Lower Noi in a wet regime and the Upper Noi in a dry
regime, both have considerable good reservoir properties to store gas. Above Lower Noi
is founded the Shinai formation, which is considered as a regional seal, sediments are
deposited in a marine context. Finally, the Lower Nia formation which is the most
important reservoir in terms of volume is deposited above the Shinai formation, most of

sediments in Lower Nia is considering developed in an Aeolian system.

The seismic crop used in the study were extracted in the highest part of a structure
named Kinteroni-Sagari (Luque & Huaman, 2016), Figure 44. The anticline Kinteroni-
Sagari is a complex thin-skinned structure. The structure is part of a giant thrust wedge,

hanging-wall anticlines (McClay et al., 2018b).

In the area of the seismic crop, three directional wells were drilled. In order to
evaluate the availability and benefits of the stochastic seismic inversion coupled with
Bayesian facies classification to characterize the reservoirs in the area three seismic lines
were analyzed, two of them cut the anticline (inline K1 and arbitrary line K3) and one of

them is along the axis of the anticline parallel to the reverse fault (seismic xline 420).
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Figure 44 — Location of the seismic crop where is possible to observe the highest part of
the anticline and the seismic lines (red lines) to analyze the stochastic seismic

inversion and the Bayesian facies classification results.

The analysis in these sections allow us to understand the facies occurrence far
away the wellbore and between them. Moreover, results in this study could guide and
currently update facies propagation using only geostatistical methods.

6.2.1 Seismic xline 420

This interpreted seismic crossline 420 includes the K2, K1, and K3 wells, Figure
45. The interpreted crossline 420 (NE-SW direction) is ubicated in the east part of the
main anticline structure called Sagari-Kinteroni (Venturo & Huaman, 2013). The seismic
amplitudes are represented by a range of colors from bright red to bright blue, where the
peak is colored in bright blue and the trough is colored in bright red. Furthermore, the
seismic image of the hanging wall structure (Kinteroni) shows good quality of signal, and

the amplitude seems to be balanced across the wells.
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Figure 45 — Seismic inline 420 of the near stack [0-12°] shows the seismic horizons

1.8 —

interpretation, the target zone between Upper Nia (green line) and
Copacabana (black line), the position of the three Kinteroni wells, and also

an excellent signal-noise ratio represented by the visual seismic quality.

In the seismic interpretation is observed that the structure is in the hanging wall
of an important reverse fault. This structure could be considered the east part of a unique
large anticline (Sagari-Kinteroni) and its morphology is a little wavy due to the presence

of small faults and pre-existing dune deposition in the Lower Noi formation (Grosso et
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al., 2017). The aeolian dunes in the Lower Noi formation are the most notorious

geomorphology seismic expression in the area.

The seismic inversion results of the crossline 420 is shown in the Figure 46. An
important layer of quality control is the anhydrate above the main reservoir of Lower Nia.
The presence of this evaporite level is widely known and the values of the acoustic
impedance are relatively high (values from 12000 to 13000 (m/s * gcc), it is marked in

the upper right part of Figure 46.
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Figure 46 — The left part of the figure presents the input of the seismic inversion, and the

right part shows the output of the seismic inversion of the crossline 420.

The facies variations inside the reservoirs are difficult to predict considering only

seismic amplitude information. However, the acoustic impedance I,, coupled with the
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V,/V ratio and Bayesian classification could map these facies heterogeneity. Runing the

Bayesian facies classification using the seismic inversion results in the crossline 420
identified different kind of accommodation in the three main reservoirs zone (Upper Nia,
Lower Nia, and Noi-Ene) Figure 47.
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Figure 47 — Bayesian facies classification applied to seismic inline 420 using the elastic

seismic inversion results of I, and V,, /Vs.

The seismic Bayesian facies classification applied to seismic crossline 420 shows
interesting results. For example, the left part of well K3 in the Noi-Ene interval, it is
possible to observe a level of fine-sandstone facies which could be linked to interdune
deposits. Above this level, the present of sandstone facies is related to aeolian climbing

mega dune.

In the case of Lower Nia interval, the architecture of the aeolian seems to be
temporally and spatially variable (dynamic) systems. The aeolian succession of Lower
Nia is very similar to Permian Cedar Mesa Sandstone outcrop of about 120 meters
thickness in White Cayon, Utah (Mountney, 2006). The aeolian succession of Lower Nia
is not just one continuous episode of accumulation but rather it is punctuated. Thus, the
thickness of Lower Nia formation is composed of repeated aeolian accommodation
sequences in a sequence stratigraphy context that are each separated by major horizontal
bounding surfaces that represent super surfaces, so planation surfaces where the dune
field was curtailed and planed off before the next sequence accumulated later on Figure
48.
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Figure 48 — Bayesian facies classification geological interpretation in Lower Nia using

the elastic seismic inversion results of I,, and V}, /V%.

The well-log and core data from Kinteroni wells identified a middle section with
a more heterogenous pattern showing intercalations between small dunes and damp to
wet interdune facies. Thus, the deflationary super surface could be interpreted at the
presence of fine sandstones facies and bound aeolian sequences where fine sandstone
facies presents a decrement in the rock property quality compare to sandstone facies
related to aeolian dune and sand-sheets (parallel-laminated sandstones) probably with less

influence of water table in the system (Kocurek & Nielson, 1986).

6.2.2 Arbitrary seismic line K3

This seismic line is along the well path of K3 and shows an excellent signal-noise
ratio with continuity of reflectors in the reservoir window of interest between the Upper

Nia and Copacabana formation.
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Figure 49 — Seismic Line along the survey of the K3 shows excellent signal-noise ratio,

where peak and trough are represented by white and black respectively.

The seismic inversion volumes (I,,, I; and Density) of the arbitrary seismic line
K3 is shown in the. The geology framework in the area has two important layers of quality
control. First, the anhydrate above Lower Nia formation which represents an well-known
evaporite level with high values of the acoustic impedance (values from 12000 to 13000
(m/s * gcc), it is marked in the upper right part of Figure 50. The second layer is the
Copacabana formation which is below the Noi-Ene zone, the P-impedance inversion
result match so well with the high values from 12500 - 14000 (m/s * gcc) related to

carbonates rocks of this formation.
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Figure 50 — The left part of the figure presents the input of the seismic inversion, and the
right part shows the output of the seismic inversion of the arbitrary seismic
line K3.

The seismic Bayesian facies classification applied to the arbitrary seismic line K3
shows prominent and valuable information. For instance, in the Noi-Ene zone is possible
to observe that fine sandstone facies could be associated with deposits of damp interdune
which occur where the water-table is close to the interdune surface (Bristow & Moutney,
2013), immediately above, the present of sandstone facies could be related to aeolian
climbing and aggrading dunes or sandsheet deposits Figure 51.

In the case of Lower Nia interval, fine sandstone facies are found in an intermedia

level. In most wells at this middle section shows intercalations between small dunes and
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damp to wet interdune facies. Thus, a deflationary super surface could be pointed at the
presence of fine sandstones facies and bound aeolian sequences.
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Figure 51 — Bayesian facies classification applied to arbitrary seismic line K3 using the

elastic seismic inversion results of I, and V, /1.

6.2.3 Seismic inline K1

This seismic line is along the survey of well K1, the seismic line corresponds to
the inline 167 in the seismic survey. Figure 52 shows the near stack [0-12°] which
presents an excellent signal-noise ratio and continuity of the reflector in the reservoir
window of interest between Upper Nia and Copacabana formation. Also, well survey,

tops and seismic horizons are included.

The well is located in the hanging wall part of the structure, which corresponds to
the highest part of the anticline. The trust fault plays an important role in the expression
of the anticline and the seismic signal is also affected by the reverse fault plane mostly
close to the plane. Despite the signal reduction close to the fault plane, the seismic signal

in the anticline is reasonably high-quality to be used in seismic inversion process.
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Figure 52 — Seismic XLine 716 which has the same direction of well K1 survey, the near
stack [0-12°] shows excellent signal-noise ratio where peak and trough is

represented by blue and red color respectively.

The elastic seismic inversion result is presented in the Figure 53. The three
volumes (1, I, and Density) corresponds to the P50 which shows accurate visual result
in tern of quality details. For instance, the top of Copacabana formation is well defined
which is related to carbonate rocks with high values of acoustic impedance in range values
from 12500 - 14000 (m/s * gcc). On the other hand, the Middle Nia formation also
presents high values of acoustic impedance with values around 13000 (m/s * gcc)

related to a level of anhydrate facies.
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Figure 53 — The left part of the figure presents the input of the seismic inversion, and the

right part shows the output of the seismic inversion of the inline 716.

The seismic Bayesian facies classification applied to seismic inline 716 in Figure
54 shows valuable information. For example, in the Noi-Ene zone is possible to observe

that fine sandstone facies could be associated with deposits of damp to wet interdunes.

In the case of Lower Nia, the well K3 in the middle section shows a predominant
present of fine sandstone facies. On the other hand, the seismic Bayesian results could
predict these fine sandstones with less proportion compared to well-log interpretation in
this middle section . Thus, the presence of fine sandstones facies in the middle section of
Lower Nia suggests accumulations under wet conditions or at least different to the upper
section where sandstone facies could be associated with dune deposits with excellent
reservoir properties suggesting dry conditions of the system.
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Figure 54 — Seismic inline 716 along the survey of the K2 showing the Bayesian facies

classification using the seismic inversion results.

6.3 Future Perspective

There is always room for improvement, this study could serve as a basis for some
possible lines of research to be implemented. Seismic reservoir characterization should
be a routine workflow to be done and methodologies associated with the topic of current
study should continue, such as rock-physics model, fluid substitution, seismic
petrophysical characterization, improving efficiency of seismic inversion algorithm and
so on. For study purposes a portion of the total seismic survey was used, future tasks that
include the whole seismic survey must be done, this would imply a significantly more

computational resource.

Rock-physics model could provide an easy-to-use toolbox for lithology and pore
fluid interpretation of well-log data and elastic inversion results. The analysis could
provide scenarios, both in terms of lithology and fluid substitutions. Also, the calibration
of local conditions to the rock physic model could add basis of the influence of geologic
factors such as burial compaction, diagenesis, rock texture, lithology, and clay cement to
seismic properties (Avseth et al., 2005).
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Apart from rock properties, another main goal of seismic reservoir
characterization is to predict fluid properties given a set of seismic measurements by the
estimation of elastic properties. For instance, the estimation of petrophysical properties,
such us porosity, clay volume and fluid saturations, can also be formulated as an inverse
problem and is generally referred to as rock physics inversion or petrophysical inversion
(Grana, Azevedo, Figueiredo, & Mukerji, 2022). It is a more challenging work and needs
to add all possible data to remove the bias in likelihood PDFs caused by zones far away
of well-control, an alternative is the generation of pseudo-wells in those zones. Authors
such as Dvorkin et al. (2014) and Fernandes and Lupinacci (2021) show the steps for
generating spatially correlated pseudo-wells. With these pseudo-wells, the electrofacies
likelihood PDFs could represent a better separation and, consequently, less confusion

between them.

In recent decades, seismic inversion has been successfully extended to a kind of
statistical framework for assessing the uncertainty of inferred 3D surface elastic models,
which is one of the major limitations of deterministic inverse procedures. Unfortunately,
these alternatives of elastic inversion algorithm are computationally expensive and only
used in academia and not in the day-to-day life of the oil industry (Azevedo & Soares,
2017). Therefore, their development and implementation give the opportunity to be
evaluated and shown the benefits that this type of approach brings to the reservoir
characterization. This study is one of the academy purpose among others (Fernandes et
al., 2024). Further steps are feasible, such as the study presented by Grana et al. (2023)
the study introduces the Markov chain Monte Carlo (MCMC) approach where complex
prior models, such us multiple-points statistics simulations based on a training image
were introduced to generate geologically realistic facies realizations. On the other hand,
Ni, et al. (2024) presented a geostatistical seismic inversion method constrained by a
seismic waveform. The correlation coefficient of seismic data is used to measure the
similarity of the seismic waveforms, replacing the traditional variogram for sequential
Gaussian simulation. Under the Bayesian framework, the MCMC algorithm is combined
with the constraints of seismic data to randomly perturb and optimize the simulation

results for obtaining the optimized parameter inversion results.

Any alternative way to improve the efficiency in the workflow is an opportunity
of research. In the same row, several ways to optimize the objective function in

geostatistical inversion were shown by Azevedo & Soares, (2017). A further step in the
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workflow of the study is the implementation presented by Liu & Grana, (2019), they use
a very common optimizer in machine learning for the objective function, which is ADAM
(Adaptive Moment Estimation). The development of these types of algorithms brings
interesting perspectives for future academic work. For this reason, Python programing is

an essential tool for students and geosciences nowadays.
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7 CONCLUSSION

This study showed a workflow for integrating information at scales of well-log
and seismic for the characterization of sandstone reservoirs of a Kinteroni field in the
Ucayali Basin using the Python programming language. The workflow presented made it
possible to estimate and evaluate the quality and distribution of the reservoirs facies in
the target zones which are framed between Upper Nia at the top and Copacabana at the

bottom of the sequence in the study area.

Thankfully, partially stacked seismic volumes are available, it was possible to
perform stochastic seismic inversion and use attributes such as (1,,) and V,/V; to perform
Bayesian classification in more than one dimension. The combination between I,, and the
V,/V; ratio bring us the benefits to the differentiation between electrofacies related to
reservoir a non-reservoir. To perform the stochastic elastic seismic inversion, the
algorithm Ensemble Smoother with Multiple Data Assimilation (ES-MDA) was selected.
The study is the first work that uses this algorithm for seismic elastic inversion in Ucayali

Basin.

In this work, the 50th percentile of the posterior distribution of the stochastic
elastic inversion was used for the Bayesian classification of reservoir and non-reservoir
facies. Previously, these electrofacies were defined based on well-log information from
the three wells available in the study area (Kinteroni field) and upscaled using Backus
approach at seismic scale. Data from the three wells were also used to construct

probability density functions of conditional likelihood in the target zone.

From Bayes' theorem, it was possible to obtain the confusion matrix of facies
prediction. The first approach for non-reservoir and reservoir facies, the results were
outstanding, they were justified because target zones are well defined and restricted by
seismic horizons where units contain more than 90% of specific facies (reservoir and non-
reservoir). In conclusion, seismic inversion also could obtain a reasonably good result in
the discretization of facies considering reservoir and non-reservoir facies. According to
the confusion matrix, reservoir facies get 0.86 of true positive and non-reservoir facies

obtain 0.8 of true negative.

The quantitative evaluation of stochastic elastic inversion through the coefficient

of linear correlation with the upscale well profile showed that there was a gain in quality
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of results compared to that of deterministic acoustic inversion. In the stochastic seismic

inversion, the average success rate was 65% against 58% for the deterministic inversion.

Notorious difference in seismic inversion result was observed in the wells , such
as K2 well, in which the correlation coefficient went from 49% in the deterministic
inversion to 66% in the stochastic inversion. In the three wells stochastic has the
advantage because it is in the statistical framework and the result is not unique. In
addition, stochastic inversion is capable of providing quantitative and important

information to evaluate the potential error.

The sensitivity of the ES-MDA outputs in relation to the input parameters was
also evaluated. For instance, these parameters are the number of a prior ensemble
members and the number of iterations. This was an important analysis, as these

parameters are directly related to the required computational time for the inversion.

The analysis showed that a low number of ensemble members considering 200,
produces a satisfactory result according to correlation coefficient, but it becomes noisy in
the seismic section. Regarding the number of iterations (data assimilation), it was
observed that it has little subtle impact on the difference between the original and modeled
data on a randomly trace. Therefore, the best reasonable combination found was 300 prior

ensemble members and 5 number of iterations.

Overall, seismic inversion results present outstanding information compared to a
deterministic approach. Offering not only a single optimal solution (deterministic) instead
of multiple realizations (stochastic) of the subsurface elastic properties. Indeed, these
results should be integrated into the future geological models allowing greater control on
the uncertainties in reservoir models because it includes a lateral spatial variability from
seismic information. Moreover, the second approach of Bayesian facies classification into
two groups of facies (sandstone and fine sandstone) in the target zones allow to identify
different characteristics related to the depositional systems where those sediments were
accumulated. For instance, in the Noi-Ene zone was possible to observe interval of fine-
sandstone facies related to the deposition of damp interdune which could have less quality
rock properties compared to sandstone facies which are related to climbing dunes and
sandsheet deposits. On the other hand, Lower Nia presents predominant fine-sandstone
facies in the middle section related to damp to wet interdune, even a fine horizontal

interval of fine-sandstone facies could be associated to deflationary super surface, which
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could be the limit of an aeolian successions. And Finally in the Upper Nia interval
presents a less horizontal accommodations of the two group of facies due to the
environment systems where these facies are accumulated, which is interpreted as a

distributary fluvial system.
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