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Abstract 

The siliciclastic rocks in the Ucayali Basin are the main reservoirs. They contain 

the biggest gas accumulation in Peru. The complexity of the different depositional 

environments of these rocks have been studied over recent years by various researchers. 

Aeolian and ephemeral fluvial environments were identified in core information 

from many wells in the area. The complexity of the areal distribution of these sandstones 

according to the development wells are not continuous as 3D facies model building at 

first attempt. For this reason, the possibility to integrate well-log data with seismic 

allowed us to evaluate in qualitative and quantitative manner. 

 This study presents the implementation of a stochastic seismic inversion using the 

algorithm Ensemble Smoother with Multiple Data Assimilation (ES-MDA) coupled with 

a Facies Bayesian Classification to characterize the areal distribution of the most 

favorable facies to be reservoir. The process begins using available well-log data and 

validates the results at this scale, and then extrapolates the entire process using the seismic 

data information. Most of the entire workflow including the stochastic seismic inversion 

and Bayesian classification could be done using Python (open-source programing 

language) at different scale dimensions such as, well-log data (1D) and seismic data (2D). 

 Overall, the stochastic seismic inversion offers improvements compared to a 

specific deterministic method such as, better vertical resolution and non-unique results of 

the inverted elastic properties. Also, the seismic inversion coupled with the Bayesian 

classification allows to delineate the facies distribution according to their depositional 

environment in relation to amplitude and elastic properties for the main gas reservoir units 

in the area. Moreover, different features of aeolian and fluvial systems were identified in 

the different seismic sections. 

   

Keywords: siliciclastic reservoirs, stochastic seismic inversion, ES-MDA, Bayesian 

classification.  
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1 INTRODUCTION 

The south part of Ucayali Basin, also named The Camisea sub-basin allocated the 

main volumes of Gas in Peru with a production that has already surpassed the average of 

79,204 Boe/day. It seems to be one of the most important Peruvian sedimentary basins 

according to production terms. It is one of the Sub-Andean Basins of Peru, the basin is 

bordered by the Maranon basin to the North, Huallaga Basin to the west, Madre de Dios 

Basin to the south, and the Brazilian Shield to the east (Perupetro, 2006).  

In the last few decades, seismic interpreters have put increasing emphasis on more 

quantitative techniques for seismic interpretation, as these can validate hydrocarbon 

anomalies and give additional information during prospect and reservoir characterization 

(Avseth et al., 2005). Quantitative seismic interpretation seeks to understand and measure 

the distribution of reservoir properties and elastic parameters of rocks in subsurface. The 

most important techniques include post-stack amplitude analysis, seismic attributes 

analysis, acoustic and elastic impedance inversion, offset-dependent analysis (AVO), 

facies modeling, forward seismic modeling, rock-physics models, petrophysical seismic 

inversion and extended elastic impedance. As a result, large volumes of information allow 

us to reduce the uncertainty in decision-making for exploration and reservoir oil and gas 

departments (Simm & Bacon, 2014). 

Seismic quantitative interpretation has several tools as aforementioned, one of the 

most important is the seismic impedance inversion (acoustic and elastic). Impedance 

inversions take into account the full waveform of the seismic trace, not just the 

amplitudes. In general, impedance inversion is a tool to derive seismic attributes (𝐼𝑝, 

𝑉𝑝/𝑉𝑠, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑟𝑎𝑡𝑖𝑜) that can be linked to rock properties (lithofacies, porosity, pore 

fluids, etc.) using rock-physics models and statistical techniques (Avseth et al., 2005).   A 

popular approach to the facies identification problem is the use of crossplot templates of 

“impedance type” properties such as 𝐼𝑝 and 𝑉𝑝/𝑉𝑠 (Ødegaard & Avseth, 2004). However, 

in the area the only one study regarding this topic was submitted by Huamán (2018). 

Seismic inversion can be basically divided into deterministic and stochastic. The 

solutions of the deterministic inverse problem are formally shown by (Tarantola, 2005) 

and have been widely used since then. However, deterministic inversion tends to run into 

problems such as the impossibility of estimating uncertainty and the strong bias of the 

result due to the low-frequency model. To address these aspects, it is preferable to use 
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stochastic inversion due to it can generate several realizations of the model that seek to 

describe the potential variabilities of rocks in the subsurface (Simm & Bacon, 2014). 

Currently, there are several methods to carry out stochastic seismic inversion (Buland & 

Omre, 2003). The method applied by Liu & Grana (2018) for stochastic seismic inversion 

method is called Ensemble Smoother with Multiple Data Assimilation (ES-MDA). This 

method is able to tackle the problem of nonlinearity of the direct model in Aki-Richards 

equation (Aki & Richards, 1980) for largest angles and in the domain of rock-physics. 

Recently, it is common to use elastic seismic inversion results for facies 

classification, because ambiguities in lithology and fluid identification base only on 

normal-incident reflection amplitudes and impedance (𝐼𝑝) can be often effectively 

removed by adding information about 𝑉𝑝/𝑉𝑠 - related attributes (Avseth et al., 2005). For 

instance, Mukerji et al. (1998) performed facies classification based on acoustic 

impedance (𝐼𝑝) and elastic impedance (𝐼𝑠) using Bayes' theorem. The methodology 

involves passing one or more elastic parameters to a volume directly related to the 

properties of reservoirs and/or the facies using the relationship between them. 

Unfortunately, studies about seismic facies characterization are scares in the area, the 

only one was summited by Huamán (2018). 

In this dissertation, a workflow for seismic quantitative interpretation in reservoir 

sandstones in Ucayali Basin is presented. To do this, a stochastic seismic inversion was 

carried out using ES-MDA and, with the elastic volume (𝐼𝑝 and 𝑉𝑝/𝑉𝑠) results from this 

step a Bayesian facies classifications were performed. The facies were defined based on 

data from three wells in the study area. For study purposes five types facies were reduce 

to two main groups reservoir (sandstone and fine sandstone) and non-reservoir (shale, 

carbonate and anhydrate) facies. To carry out the entire workflow, the Python 

programming language was used. 

The main objective of the study is to understand the distribution of these facies in 

the different reservoirs observed in the field and unhide the depositional behavior in the 

structure in relation to amplitude, elastic properties and facies distribution. The selected 

area for the study is a seismic crop where 3 wells which have the necessary well-log data 

to perform this study are available. The target zones are framed between Upper Nia at the 

top and Copacabana at the bottom of the sequence. 
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By the other hand, another main objective is to validate the applicability of 

stochastic inversion using ES-MDA and Bayesian facies classification to gas reservoir 

sandstones. Some companies performed seismic inversion and rock-physics internally, 

but any of them apply results in their currently making-decision geological 3D model. 

For this reason, the application of stochastic seismic inversion using the ES-MDA to gas 

reservoir in Ucayali basin can serve as a basis for future applications. 
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2 UCAYALI BASIN  

The south part of Ucayali Basin, also known as the Camisea sub-basin, presents a 

remarkable structure style and plays an important role in hydrocarbon production. This 

sub-basin is located between the southern Ucayali Basin and northern Madre de Dios 

Basin, Figure 1. The western limit of this sub-basin is the basement-involved structure of 

the Otishi High. The Tambo Fault, probably a lateral ramp of the Otishi High, constitutes 

a sharp limit between the different structural styles of the north and the south (Zamora et 

al., 2019). 

 

Figure 1 –Shows the Marañón, Ucayali and Madre de Dios Basins overlaying the 

topography map of Peru. Peruvian Sub-Andean sub-basins (Santiago, 

Huallaga, and Ene) are isolated from the major Amazonian foreland basin 

system.  The Camisea sub-basin (blue rectangle) is located between the 

southern Ucayali Basin and northern Madre de Dios Basin. Adapted from 

Zamora et al. (2019). 
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The predominant structural style in the basin is the thin-skinned, generating trends 

of anticline and syncline which has almost the same NW-SE direction, Figure 2. The 

geometry of these anticlines is controlled by inverse faults with vengeance in the Forland, 

out-of-sequence thrusts (OOST) commonly ends up in triangle zones and back-thrust 

(Espurt et al., 2011).  

 

Figure 2 – The NW-SE trend of anticlines which most of them are gas accumulated 

structures. 

Regional studies suggest that the folding in the Peruvian Sub-Andean begins in 

the middle Miocene, and it remains active (Hermoza, et al., 2005). On the other hand, 

other studies propose that the current configuration of the basin was formed by the third 

Quechua orogeny (Simon, 1993a). Overall, the structures affect only rocks from Silurian 

age which form thin folded layers disconnected from older layers of rock (Coward, 1983). 

Figure 3 presents the long-lived sedimentary record in The Sub-Andean zone of Peru 

from Ordovician to present (Zamora et al., 2019), and the blue rectangle highlight the 

statigraphy portion of the study.  

Gas Structure

Gas-Unfilled

Main Faults

Basin Boundary

Camisea Sub-Basin

Ene 
Basin
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Figure 3 – Schematic chronostratigraphic along the strike of the Sub-Andean Zone. 

Adapted from Zamora et al. (2019), blue box represents the stratigraphy 

studied portion. 

 

2.1 Stratigraphy 

The stratigraphy of South part of the Ucayali Basin, more specifically the sub-

basin Camisea consists of rocks from Ordovician to Quaternary, with a thickness of 

around 8000 meters, which are above a Precambrian basement of granite. All these units 

are affected by many erosive events which the most expressing is at base of the 

cretaceous. It has a dipping of 2 degrees and erodes the Permian and Pre-Cretaceous 

reservoirs in the NE-SW direction (Disalvo et al., 2008). In this study will be described 

the stratigraphy units involved in the seismic inversion approach which include Ene, 

Lower Noi, Upper Noi, Shinai, lower Nia, Middle Nia and Upper Nia units, Figure 4. 
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Figure 4 – Generalized stratigraphic column of the south part of the sub-basin Camisea. 

Adapted from Peña et al. (2018). 

Regarding the providence of the sediments for the reservoir to be included in this 

study, there has been recently established some sceneries. Ene-Noi and Lower Nia 

reservoir sands (Upper Permian), Peña et al. (2018) interpreted a possible source of 

sediments from the Southeast and East (from a source of ~552-612Ma). Probably is the 

similar source that Bahlburg et al. (2009) describes as a “Late Neoproteroizoic Mobile 

Belt” (~541Ma). Also, Peña et al. (2018) proposed the source of sediments that was 

located in the peleogeographical highlands known as “Alto de Manu” and “Alto de 

Paititi”, some another evidence come from seismic interpretation that shows a pinch-out 

and truncation of these reservoir units above these paleo-highlands. 
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For the Upper Nia (Albian - Cenomanian) reservoir sands, the source of sediments 

could be from the East (from a source of ~1035Ma - ~1048Ma, which could be the 

“Sunsas Mobile Belt” according to (Bahlburg et al., 2009). Additionally, Peña et al. 

(2018) based on both paleocurrents from well-log data and a gneiss age (1060+- 6 Ma) 

from the Otishi mountains. They concluded that the Otishi mountains could be another 

possible source of sediments. 

2.1.1 Ene Formation (Upper Permian) 

The Ene Formation is immediately above Copacabana Group, its sediments are 

considered to be deposited in an ephemeral fluvial lacustrine environment with a range 

of thickness from 25 to 34 meters in this part of the sub-basin. At the base of this unit is 

mainly composed by a thin layer of 3-4 meters of dark gray shale with high organic 

material (Seminario et al., 2005), followed by a present of sandstones composed of fine 

to very fine grain of quartz and feldspar, cemented with dolomite. 

2.1.2 Noi Formation (Upper Permian) 

The Noi formation is apparently deposited in a more complex environment which 

could be separated into two members, Lower Noi and Upper Noi. 

In the east part of the Camisea sub-basin the Lower Noi is interpreted as 

longitudinal dune cords type Erg, Figure 5. The Lower Noi member is composed of fine 

to medium grain of red sandstones, the grains are composed of quartz (85%), feldspar 

(10%) and lithic (5%) with porosity values of 13% and permeability from 4 to 440 

millidarcy. Additionally, the member presents variable thickness from 15 to 80 meters 

(Grosso et al., 2017). 

The Lower Noi seismic amplitude map shows rib-type bands corresponding to the 

longitudinal dunes and adjacent interdunes, with a homogeneous spacing of about 3000 

meters. The geomorphologic width of the dunes is 800 to 1000 meters and the interdunes 

are about 2000 meters. The direction of the paleocurrents is towards the NE according to 

well-log data, and the FMI images indicate levels of high-angle cross-stratification, 

corresponding to an aeolian environment (Grosso et al., 2017). 
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Figure 5 – Seismic amplitude map of the Lower Noi member showing the geometry of 

the dunes and interdunes. Adapted from Grosso et al. (2017). 

This complexity of dunes and interdunes are also distinguished in core 

information. Dune facies are characterized by cross-stratification of high angle. On the 

other hand, interdune facies are associated with parallel and cross stratification of low 

angle, presence of anhydrite associated with bioturbated paleosol. The action of the water 

table during aeolian construction provided favorable conditions to the accumulation and 

preservation of interdune deposits (dry and wet) in these probable hybrid dry-wet aeolian 

systems (Colombo et al., 2019). A continuous layer of anhydrite from 2 to 9 meters is 

deposited above this member, representing a regional flood due to a sudden rise in the 

water table associated with vadose cementation of the sandstones with anhydrite in an 

arid climate. Moreover, the differential compaction of the interdunes reaches values of 

45% to 75% and it probably has caused the folding of the overlying units of Upper Noi, 

Shinai, Lower Nia, and Middle Nia, this folding is also appreciated in seismic 

interpretations (Grosso et al., 2017). 

The Upper Noi member corresponds to a grain growth of siliciclastic sequence of 

subfeldspathic sandstones, dolomites, sandy claystone and varicolored claystone, with an 

approximate thickness of 30 meters at least in Kinteroni field. The Upper Noi member is 

composed of fine to coarse grain of sandstones, and with a moderate present of cements 

(8–16.5%), the composition of these cements can be dolomitic, calcareous, feldspathic, 

silicic, hematitic and argillaceous. Towards the base of the Upper Noi member is observed 

a high degree of bioturbation, deformation bands by diagenesis. The middle part of the 
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Upper Noi member is characterized by the presence of massive sandstones that graded to 

sandstones with plane-parallel lamination occasionally altered due to fractures partially 

filled with dolomite. Towards the top, the main sedimentary feature is high angle cross 

bedding in sandstones (Rojas et al., 2013). 

According to sedimentological studies in the Upper Noi, four facies associations 

related to a specific system environment were recognized, such as lacustrine, evaporitic 

(sabkha), ephemeral fluvial and aeolian deposits Figure 6. All of them were part of a 

marginal aeolian system, which was influenced by clime, eustatic and tectonics changes 

typical of that period of time. Moreover, petrophysical studies of this reservoir indicates 

the presence of both primary and secondary porosities with ranges of values between 8 

and 18%, and permeability in the order of 1 millidarcy to 1400 millidarcy (Rojas et al., 

2013). 

 

Figure 6 – Location of Kinteroni field (orange box), on the left down part drill core picture 

and lithological column of the Upper Noi member, Camisea Sub-basin, Peru. 

Adapted from Rojas et al. (2013). 

2.1.3 Shinai Formation (Upper Permian) 

Immediately after the deposition of the aeolian system of the Noi interval, the 

region is affected by a rise of sea level. This condition allowed the deposition of dark 

shaly and calcareous sediments (marine) with some intervals of chert mainly the center 

part of the interval, the thickness average of this formation is around 80 meters in the area 

(Seminario et al., 2005). In the Kinteroni field the average thickness is 90 meters. 
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2.1.4 Lower Nia Formation (Upper Permian) 

The Lower Nia Formation is above a geological Permian unconformity and is 

below a sabkha surface which is followed by an important pre-cretaceous unconformity, 

the formation is deposited in a pre-cretaceous time (Upper Permian). The Lower Nia Fm. 

is composed of fine to medium grains of sandstones (feldspar-rich and lithic) showing 

very good sorting, reddish appearance and the average thickness of 120 meters, the 

Cretaceous unconformity reduce and even disappear the Lower Nia formation to the 

southeast part of the basin (Rojas, 2013). 

Generally, Lower Nia is considered to be deposited in a desert aeolian 

environment with ephemeral fluvial episodes, Sabkha and, lacustrine (Disalvo et al., 

2002); (Seminario et al., 2005); and (Disalvo et al., 2008). The intercalation of dunes and 

interdunes are the most representative facies in the whole section Figure 7. 

 

 

Figure 7 – Location of Kinteroni filed in the Camisea sub-basin, on the right part 

lithological column of the Lower Nia, Camisea sub-basin, Peru. Adapted 

from Rojas et al. (2013). 

Three main sections could be identified, the lower section shows a basal aeolian 

dunes that shows grain fall and cross bedding grading, with coarse to conglomeratic 

laminae. Those laterally continuous deflation lags within the aeolian sandsheet deposits 

could represent periods of alternating aeolian accumulation under dry-wet conditions 

(Bristow & Moutney, 2013). On the other hand, the middle section is the most 

heterogeneous part and shows intercalations between small dunes and damp to wet 

interdune facies. The abundance of interdune deposits showing a facies association such 
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as eolian sand sheets and climbing sand with parallel stratification suggests that the 

interval was accumulated under wet conditions. Finally, the upper section is represented 

by homogeneous dune deposits with excellent reservoir properties and composed of fine 

sandstones with high angle cross bedding suggesting dry conditions of the system. 

Overall, Lower Nia formation is interpreted as a Wet aeolian system, based on the 

position of water table in relation to the paleo-depositional surface and facies association 

(Kocurek & Havholm, 1993) . Lower Nia is characterized by the present of aeolian dunes 

with intervening interdunes that exhibit evidence of sedimentation that is influenced by 

damp and/or wet surface conditions. In such systems the behavior of the accumulation 

surface over time is controlled by changes in the level of the water table, sustained-water 

table decreases aeolian deflation, enhancing the preservation of wet interdunes (Frank & 

Kocurek, 1996). Therefore, the accommodation in Lower Nia formation in the three 

aforementioned sections are controlled by the continuous rise of water table resulted in 

stabilization of dunes and interdunes, and development of the laterally continuous 

paleosol horizon on the top of the stratigraphic sections. 

2.1.5 Middle Nia Formation (Permian-Triassic) 

The lithology is composed of clays with intercalation of limestone, dolomite and 

particularly in the area with level of anhydrate which is considered to be deposited in a 

restricted marine environment. According to new studies of thermochronology Middle 

Nia Shale is proposed to be deposited in a period between Permian and Triassic, (Peña et 

al., 2018). 

2.1.6 Upper Nia Formation (Cretaceous) 

Lithology is constituted by fine sandstones of reddish-to-reddish gray color, with 

horizontal or cross parallel lamination. In the basin the Unit presents an average thickness 

of approximately 25 m with good lateral continuity with porosities vary from 18- 20% 

and permeabilities of 50-1500 millidarcy (Seminario et al., 2005). In the area of the study 

the thickness tends to increase up to 70 meters on average.  

Core information in the Kinteroni field of the sedimentary interval of Upper Nia 

is interpreted as generated in an alluvial environment, with mainly non-channelized 

deposits in regions with a seasonal or strongly intermittent discharge. Also, deposits of 

ephemeral shallow lakes are recorded which could represent the distal part of a 
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distributary fluvial systems (Ribes et al., 2015). In a more regional aspect, the interval 

cored in Kinteroni field represents the proximal area of a sedimentary complex 

environment which could be interpreted as a combination of an ephemeral fluvial system 

and a sheet-flood dominated fluvial distributary system with a sedimentary stacking 

pattern generated by the superposition of non-channeled flows with shallow channels of 

low sinuosity. 

 

Figure 8 – Schematic depositional model of a sheet-flood dominated fluvial distributary 

system. The proximal area is characterized by unconfined flow in alluvial 

environments which could represent Upper Nia in the Kinteroni field. The 

medial area is characterized by ephemeral streams (unconfined terminal 

splay), and the distal area exhibits playa-lake and lacustrine environments. 

Adapted from Ribes et al. (2015). 

 

2.2 Structural Style 

The main structures in the Camisea sub-basin are anticlines and synclines , which 

are formed by low-angle thrust faults of hundreds to thousands of meters of rejection 

(Suppe, 1983). The angle of the main fault planes depends upon the lithology, commonly 

the angles are less than 16 degrees when they go through the Silurian-Devonian rocks, 

and close to the upper part of this cycle the angles tend to be horizontal.  Once the faults 

cut the upper part of the Paleozoic and Cretaceous sections, the angles are around 10° a 

20º, then go back to be horizontal in the tertiary base, and finally change the direction 

forming fold-thrust belt and, go up to surface (Disalvo et al., 2002).  
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All these angular variations produce secondary oblique faults to the mayor fault 

which segmented the trend. As a result, minor anticlines are formed as a consequence of 

these secondary oblique faults, a clear example is the trend of structures from northwest 

to southeast in this region; Kinteroni (study area of thesis), Mipaya, Saniri, Pagoreni, San 

Martin and San Martin Este (Disalvo et al., 2008). This structural trend of anticlines and 

synclines showed in Figure 9 is the most distal part of the Andean deformation front and  

has an approximate length of 110 kilometers (Venturo & Huamán, 2013). 

 

Figure 9 – Composite seismic line showing the trend of anticlines and synclines from 

northwest to southeast. Adapted from Venturo & Huamán, (2013). 

The architecture of this thin-skinned thrust system is characterized by faulted 

detachment folds and associated kink-band hanging-wall anticlines, Figure 10. These 

thrust faults commonly terminate in triangle zones in Paleogene-Neogene strata at the 

leading edge of the fold-thrust belt (Espurt et al., 2011); (McClay et al., 2018a). The top 

of the Ordovician-Silurian syn-rift sequence and the base of the Devonian-Mississippian 

post-rift units host the basal detachment of the thin-skinned system in the Camisea sub-

basin, and this characteristic is the main difference with the northern sectors (Huallaga 

and Santiago sub-basins). 

 

NW SE

SW NE
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Figure 10 – Seismic attribute line (RMS x 90° Phase change) highlighting the structural 

features and interpretation. The seismic line crosses the Sagari-Kinteroni 

structure and shows the insertion of the basement deforming the sedimentary 

sequence and producing triangle zones within the Cenozoic sequence. From 

Zamora et al. (2019). 

 

Currently two main ideas regarding the deformation in the hinterland part are 

adopted by geoscientists Figure 11. On one hand, the hinterland part of the Camisea sub-

basin has been interpreted as a duplex system within Ordovician-Silurian strata and a 

large displacement hinterland passive roof backthrust (Espurt et al., 2011). On the other 

hand, (Gil Rodriguez et al., 2001); (McClay et al., 2018b) considered the hinterland of 

the Camisea fold-thrust belt as a system of large inverted Precambrian basement fault 

blocks that are uplifted and exhumed as the Andean deformation moved west from the 

hinterland to the foreland, and transferred displacement onto the thin-skinned 

sedimentary wedge at the edge of the basin. The last model implies much less shortening 

in the Paleozoic sequence 28 km (McClay et al., 2018a) vs 53 km (Espurt et al., 2011), 

and correlates better with the length of shortening transferred to the Camisea sub-basin 
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(~23 km; Espurt et al., 2011). It is also mechanically more feasible (McClay et al., 

2018a). 

 

Figure 11 – Regional cross sections. (a). Regional cross section showing duplexing of the 

Paleozoic strata, modified from (Gil Rodriguez et al., 2001); (Espurt et al., 

2011). (b). Regional cross section showing inverted domino-style basement 

faults linking to thin-skinned thrust-related folds in the Camisea frontal fold 

belt. From Torres & MaClay, (2014). 
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3 THEORY 

This section aims to clarify some mathematical, physical and statistics that are the 

foundation for understanding the methodological stages of this work and their influences 

on the results. Initially, a statistical concept called Bayes' theorem will be introduced, 

which is the basis of  the methods that will be used in this work, such as the application 

of Ensemble Smoother with Multiple Data Assimilation for Stochastic Inversion and 

Bayesian Classification for facies prediction using borehole log data and seismic 

volumes. Moreover, the section will state and develop the mathematical fundamentals 

bound up with data such as, poroelastic properties, facies and seismic data in order to get 

an idea how these will be used in the methodology of the study. 

3.1 Bayes’ Theorem 

Understanding Bayes theorem is an essential part in this study, because the 

process to link facies with a specific value of poroelastic properties could be done by this 

method. 

For explanation purpose, 𝐸 represents a generic event and 𝑃(𝐸) its probability. 

For instance, 𝐸 could state the occurrence of sand facies in a reservoir and P(E) the 

probability to find this specific sand facies at a given location. Probability theory is based 

on axioms of Kolmogorov: 

(i) The probability 𝑃(𝐸) of an event 𝐸 is a real number in the interval [0,1]: 

 0 ≤ 𝑃(𝐸) ≤ 1, (3.1) 

(ii) The probability 𝑃(𝑆) on the sample space 𝑆 is 1: 

 𝑃(𝑆) = 1, (3.2) 

(iii) If two events, are mutually exclusive, then the probability of the union 

𝐸1 ∪ 𝐸2 is the sum of the probabilities of the two events 𝑃(𝐸1) and 𝑃(𝐸2): 

 𝑃(𝐸1 ∪ 𝐸2) = 𝑃(𝐸1) +  𝑃(𝐸2), (3.3) 

Based on these axioms, the probability of complementary event 𝐸̅ = 𝑆\𝐸, is given 

by: 

 𝑃(𝐸̅) = 1 − 𝑃(𝐸), (3.4) 
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Since 𝑃(𝐸) + 𝑃(𝐸̅) = 𝑃(𝑆) = 1, it is possible to derive that probability of the 

union of two events, not necessarily mutually exclusive could be written as follows: 

 𝑃(𝐸1 ∪ 𝐸2) = 𝑃(𝐸1) +  𝑃(𝐸2) − 𝑃(𝐸1 ∩ 𝐸2), (3.5) 

Where 𝑃(𝐸1 ∩ 𝐸2) is the probability that both events will happen. For mutually 

exclusive events, the intersection of two events in the empty set (𝐸1 ∩ 𝐸2 = ∅), and the 

probability of the intersection is 𝑃(𝐸1 ∩ 𝐸2) = 0. 

A main concept in statistic and probability is the definition of conditional 

probability, which explains the probability of an event based on the result of another 

event. 

Overall, the probability of an event can be defined more accurately if additional 

data related to the event is available. For instance, seismic velocity depends on porosity, 

rock composition and fluid saturation. Thus, if one of these properties is known, then the 

probability of seismic velocity could be estimated. 

Considering two events 𝐴 and 𝐵, the conditional probability 𝑃(𝐴|𝐵) can be 

defined as: 

 
𝑃(𝐴|𝐵)  =

𝑃(𝐴, 𝐵) 

𝑃(𝐵) 
, 

(3.6) 

Two events 𝐴 and 𝐵 will be independent, only if the join probability 𝑃(𝐴, 𝐵) is 

the product of the probability of the events 𝑃(𝐴, 𝐵) = 𝑃(𝐴)𝑃(𝐵). Thus, given two 

independent events 𝐴 and 𝐵, the conditional probability 𝑃(𝐴|𝐵) could be reduces as 

follows: 

 𝑃(𝐴|𝐵)  = 𝑃(𝐴), (3.7) 

 A common tool to estimate conditional probabilities is Bayes’ theorem using the 

conditional probability 𝑃(𝐴|𝐵) as a function of the conditional probability 𝑃(𝐵|𝐴), which 

should be easier to calculate in many geological applications. Therefore, Bayes’ theorem 

states that the conditional probability 𝑃(𝐴|𝐵) is given by: 

 
𝑃(𝐴|𝐵)  =

𝑃(𝐵|𝐴)𝑃(𝐴) 

𝑃(𝐵) 
∝ 𝑃(𝐵|𝐴)𝑃(𝐴), 

(3.8) 

Here 𝑃(𝐴) is the probability of 𝐴, 𝑃(𝐵|𝐴) is the probability of the event 𝐴 given 

the event 𝐴, and the 𝑃(𝐵) is the probability of 𝐵. The expression 𝑃(𝐴) represents the 
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prior probability of 𝐴 since it measures the probability before taking into account 

additional data associated with the event 𝐵.  

Additionally, 𝑃(𝐵|𝐴) is considered the likelihood function of the event 𝐵 to be 

observed for each possible outcome of the event 𝐵. The term 𝑃(𝐵) represents the minimal 

probability of the event B and it is a normalizing constant to ensure that 𝑃(𝐵|𝐴) satisfies 

the axioms. The resulting conditional probability 𝑃(𝐵|𝐴) is also named the posterior 

probability of the event 𝐴, since it is computed based on the outcome of the event 𝐵. 

 

3.2 Ensemble-Based Methods 

The main goal of this seismic reservoir study is to predict the elastic properties 

from seismic data. Overall, inverse notation regarding seismic reservoir characterization 

could be written as follows: 

 

 d = 𝑓(m) + ⅇ (3.9) 

 

Seismic data is represented by 𝐝, elastic attributes is represented by 𝐦 =

[𝑉𝑝𝑉𝑠𝜌]𝑇, which could be P-wave velocity, S-save velocity, and density. Finally, the 

seismic forward model is represented by 𝒇, mapping the elastic attributes m into seismic 

data d, and the error represented by 𝒆. 

This notation aims to describe the main goal of reservoir characterization which 

is to estimate the unknown variables m from the seismic measurements d, considering 

that the forward model is the best possible physical relation between model parameters 

and data. Keep in mind that physical relations 𝒇 in equation (3.9) are often nonlinear, 

such as the full Zoeppritz equation. 

In the study, a model-based inversion method was used in which, first it was built 

an ensemble of initial reservoir models of physical properties as the prior (𝑉𝑝, 𝑉𝑠 and 

Density); next, it was calculated the corresponding elastic attributes using a well-known 

equation (Zoeppritz); then it was computed the synthetic seismic response, and evaluate 

the misfit between the synthetic and the observed data to update the prior models until 

convergence. 
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This inversion method uses an algorithm based on the ES-MDA (Ensemble 

Smoother with Multiple Data Assimilation) method where the mismatch is estimated by 

re-parameterized of the data in a lower-dimensional space using SVD (Singular Value 

Decomposition) in order to optimize the procedure (Golub & Van Loan, 2013). This 

method is characterized by two things: the way the algorithm inverts the data and the way 

the algorithm optimizes the process. It applies nonlinear models to invert the properties 

of interest, and it iteratively performs a Bayesian updating step of the model ensemble.  

Kalman filter allows to derive different ensemble-based data assimilation 

methods, one of them is the Ensemble Smoother (ES).  

3.2.1 Ensemble Smoother with Multiple Data Assimilation 

Due to the undesirable computational cost of Kalman Filter for nonlinear relations, 

the ensemble-based method uses an ensemble of models to approximate the model 

covariance with the empirical covariance of the ensemble members. The Ensemble 

Smoother (ES) globally update the prior model by simultaneously assimilating the 

measurements (Leeuwen & Evensen, 1996), using the same Kalman Filter equation each 

ensemble member is updated (Emerick & Reynolds, 2013):  

 m𝑖
𝑢 = m𝑖

𝑝
+ K̃(d̃𝑖 − d𝑖

𝑝
) (3.10) 

For 𝑖 = 1, … , 𝑁_ⅇ where 𝑁_ⅇ are the numbers of ensemble members, 𝑢 and 𝑝 

denoting the updated (current iteration) and prior (previous iteration) variables 

respectively and K̃ represents the Kalman gain matrix obtained from the ensemble as: 

 K̃ = Cmd
𝑝 (Cdd

𝑝 − Cd)
−1

 (3.11) 

Here Cmd
𝑝

 represents the cross-covariance generated by the prior vector of model 

parameters m𝑝 and the corresponding predicted data d𝑝, Cdd
𝑝

 express the 𝑁𝑑 𝑥 𝑁𝑑 

covariance matrix of d𝑝 (𝑁𝑑 is the number of assimilated data), and d ̃ plays the role of a 

stochastic perturbation of the observed data sampled derived from a gaussian distribution 

〖𝒩(d, C〗d) where d represents the 𝑁𝑑 dimensional vector of observed data and Cd 

represents the 𝑁𝑑 𝑥 𝑁𝑑  covariance matrix of observed data measurement errors. In order 

to enhance the convergence, multiple times data assimilation should be performed in the 

ES-MDA (Emerick & Reynolds, 2013). 
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The equation (3.10) could be assumed as a Bayesian updating step based on the 

assumption that the model vector m is Gaussian. Due to the nonlinearity of the forward 

operator, the covariance matrices could not be computed. For this reason, an 

approximation of these covariance matrices is done using the empirical covariance 

estimated from the ensemble members, equation (3.11). The ES-MDA could be 

considered as a single Gauss-Newton iteration with a full step and an average sensitivity 

matrix obtained from the prior ensemble. By this means, multiple smaller corrections in 

the ensemble are executed as opposed to large Gauss-Newton demanding correction. Wu 

et al. (1999) improved the ES convergence applying at each iteration of ES-MDA an 

inflation parameter alpha (∝) to the data error covariance matrix for the purpose of an 

alleviating parameter for the model variations. 

Two main steps resume the ES-MDA algorithm: 

1. Determinate the number of iterations and the inflation parameters ∝𝑖 for 

𝑖 = 1, … , 𝑁 following the notation ∑
1

𝛼1

𝑁
𝑖=1 = 1 

2. Once N was defined, for each  𝑖 = 1 to 𝑁: 

• First, run the forward prior models and calculate the predictions 

{ⅆ𝑃}1,… , 𝑁𝑒
 for each ensemble member. 

• Second, generate a stochastic perturbation of each ensemble 

member as follow ⅆ̃ = ⅆ + √𝛼1 ⋅ 𝑐𝑑  . Z𝑑, considering the 

approximation  𝑧𝑑~𝒩(I𝑁𝑑
). 

• Third, run an iterative process in the ensemble using equation 10 

and 11 considering the replacement of C𝑑 by 𝛼𝑖C𝑑. 

The reduction of mismatch between the data and predictions is updated for each 

model of the ensemble. As a result, multiple model realizations are built that validate the 

measurements. Moreover, uncertainties which are not available with other techniques can 

be quantified by the covariance matrix of the updated ensemble members. 

Unlike other petroleum engineering and weathering applications which could 

demand a large computational cost than the seismic and rock-physics forward models 

(Liu & Grana, 2018), the only one drawback of the method for the inversion of large 

seismic surveys is that the number of ensemble members (models) is much smaller than 

the numbers of observation, this could yield a model with underestimated uncertainty. To 



35 

overcome that problem, the method applies the SVD as a data order reduction method to 

re-parameterize the seismic data into a lower-dimensional data space, and then perform 

the ES-MDA to update reservoir models by assimilating the re-parameterized seismic 

data. 

3.3 Bayesian Classification 

It is a statistical method which gives us the versatility to provide the most likely 

facies classification as well as the posterior probability that could be used to quantify the 

uncertainty is quite robust. Bayesian classification or also called Bayesian decision is a 

non-iterative method that estimates the facies posterior probability using prior 

information about the facies model with the likelihood function that connect available 

data to the facies definition (Grana et al., 2021). 

For instance, at a given location, a vector 𝒅 of measurements of continuous 

variables, such as geophysical properties is available, and the goal is to estimate the 

conditional probability 𝑃(𝜋|𝒅) and the corresponding most likely facies 𝜋̂. The 

assessment of 𝑃(𝜋|𝒅) can be done using Bayes’ theorem equation (3.8) as follows: 

 
𝑃(𝜋 = 𝑘|𝒅) =

𝑃(𝒅|𝜋 = 𝑘) 𝑃(𝜋 = 𝑘)

𝑃(𝒅)
=

𝑃(𝒅|𝜋 = 𝑘) 𝑃(𝜋 = 𝑘)

∑ 𝑃(𝒅|𝜋 = ℎ) 𝑃(𝜋 = ℎ)𝐹
ℎ=1

 
(3.12) 

For a specific number of facies k = 1,…,F, where 𝐹 is the number of facies. In 

equation (3.12), 𝑃(𝜋|𝒅) is the corresponding likelihood function that links the measured 

data to the facies definition, 𝑃(𝜋) is the prior model representing the prior model about 

the facies distribution, and 𝑃(𝒅)  is a normalizing constant that ensures that 𝑃(𝜋|𝒅) is a 

valid probability mass function. At each location 𝒅, the most likely facies 𝜋̂ is then 

obtained by operating the maximum of probability 𝑃(𝜋|𝒅): 

𝜋̂ = argmax𝑘=1,…,𝐹𝑃(𝜋 = 𝑘|𝒅) 

Considering all the possible values of the facies 𝜋. 

If the goal is to predict the most likely facies 𝜋̂ conditioned on the measured data, 

then it is not necessary to compute the normalizing constant 𝑃(𝒅), because of the 

numerator in Eq. (3.12) is proportional to 𝑃(𝜋|𝒅). On the other hand, if the goal is to 

estimate probability of occurrence about facies distribution, then the normalizing constant 

𝑃(𝒅) should be calculated. 
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It is common practice in geology to assume that distribution of the data, in each 

facies, is a multivariate Gaussian distribution 𝑃(𝒅|𝜋) = 𝒩(𝒅; 𝝁𝑑|𝜋, 𝚺𝑑|𝜋), where the 

means 𝝁𝑑|𝜋 and the covariance matrices 𝚺𝑑|𝜋 are facies-dependent and are often 

calculated from a training dataset including borehole data or core measurements. Under 

this assumption, the conditional probability becomes for k = 1,…,F: 

 

 
𝑃(𝜋 = 𝑘|𝒅) =

𝒩(𝒅; 𝝁𝑑|𝑘 , 𝚺𝑑|𝑘)𝑃(𝜋 = 𝑘)

∑ 𝒩(𝒅; 𝝁𝑑|ℎ, 𝚺𝑑|ℎ)𝑃(𝜋 = ℎ)𝐹
ℎ=1

 
(3.13) 

 

3.3.1 Bayesian Facies Classification 

Overall, Bayesian facies classification is, basically, the application of equation 

(3.13) considering the classes 𝑘 by facies and 𝒅 by elastic parameters, property of 

reservoir or profile that you want to use for classification. 

These facies can be lithological, electrofacies, flow facies and/or others, so that 

the greater the separation between the PDFs of each facies, the better the classification 

result could be. Thus, here in the study a scenario with two facies (reservoir and non-

reservoir) aim to predict  the two groups of facies given two available measurements of 

acoustic impedance (𝐼𝑝) and 𝑉𝑝/𝑉𝑠 ratio. In this scenario, equation (3.13) can be rewritten 

as form: 

 

𝑃 (𝜋 = 𝑓𝑎𝑐𝑖ⅇ𝑠|𝑰𝒑,
𝑽𝒑

𝑽𝒔
) =

𝑃 (𝑰𝒑,
𝑽𝒑

𝑽𝒔
|𝜋 = 𝑓𝑎𝑐𝑖ⅇ𝑠)  𝑃(𝜋 = 𝑓𝑎𝑐𝑖ⅇ𝑠)

𝑃(𝑰𝒑,
𝑽𝒑

𝑽𝒔
)

 

(3.14) 

 

3.3.2 Kernel Density Estimation 

In most cases available measurements do not follow a multivariable Gaussian 

distribution; therefore, the adoption of non-parametric approach for the estimation of the 

conditional probability 𝑃(𝜋|𝒅) could be a suitable option. 

Following the idea, the study estimates the distribution of 𝑃(𝜋|𝒅) for k = 1,…,F 

using Kernel density estimation (KDE) in a multidimensional domain. To be more 
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specific, KDE tends to honor data morphology distribution instead of parameters 

(Silverman, 1986), it means that kernel estimation (blue line) is governed by the 

contribution zone of individual kernel sampling (red dash line) Figure 12. 

 

Figure 12 – Kernel density estimation constructed with six individual kernels (red dashed 

curves), the kernel density estimates the blue curve. The data points are the 

rug plot on the horizontal axis. 

Kernel density estimation is governed by the following equation (Silverman, 

1986) & (Bowman & Azzalini, 1997) : 

 
𝑓(𝑥) =  

1

𝑛ℎ
∑ 𝐾

𝑛

𝑖=1

(
𝑥 − 𝑋𝑖

ℎ
), 

(3.15) 

 Giving equal weight to all points 𝑋1, … , 𝑋𝑛 and n the sample number from some 

univariate distribution with unknown density 𝑓(𝑥) at any given point x, 𝐾 is the kernel 

which calculates the distribution morphology, the bandwidth h > 0 also called smoothing 

parameter. 

The study extends the classification method to a set of multiple measurements at 

different depth locations and applies the Bayesian facies classification based on kernel 

density estimation for PDFs to a set of borehole measurements sampled. The two well 

logs variables at borehole location include measurement of acoustic impedance 𝐼𝑝 and 

𝑉𝑝/𝑉𝑠 ratio as well as reference facies classification. 

At each location 𝒅, it is assumed that prior probabilities and likelihood functions 

are uniformed. The Bayesian classification is applied sample by sample to calculate the 
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posterior probability of facies at each location in the interval. Then, the facies with the 

maximum (chance) probability, are predicted at each location. 
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4 SEISMIC QUANTITATIVE INTERPRETATION 

Recent advances in seismic acquisition and processing have led to enormous 

progress in reservoir characterization. Over the last several years, our understanding of 

seismic rock properties and our ability to model those properties 𝑉𝑝, 𝑉𝑠 and ⅆⅇ𝑛𝑠𝑖𝑡𝑦𝑠 have 

improve substantially (Vernik, 2016). This, because Seismic quantitative interpretation 

assists to understand the relationship between rock properties and elastics parameters. 

Also, some techniques allow to obtain the non-uniqueness of the solution, using 

probabilistic methods that aim to estimate the most likely model as well as the uncertainty 

associated with the predictions (Grana et al., 2021). The main activities related to this 

area are pre-stack seismic conditioned, seismic inversion, properties and facies 

modelling, Rock Physics, and 4D Seismic. 

4.1 Seismic Inversion 

Seismic reservoir characterization aims to estimate elastic and petrophysical 

properties, such as P-wave and S-wave velocities, density, facies, porosity, clay volume, 

and fluid saturations, from seismic and borehole log data, through elastic wave 

propagation and rock-physics relations. Traditionally, seismic inversion refers to the 

estimation of elastic properties from seismic data (Doyen, 2007). 

Any prediction regarding an Earth’s physical property could be approximated by 

using a theoretical model aiming to explain the problem, and the process can be done 

using a forward modeling which generally requires linear or non-linear operator for 

accurate solution depending on the complexity. Therefore, seismic inversion aims to infer 

the model parameters of the system in studies that give rise to that solution; (Aki & 

Richards, 1980), (Rusell, 1998), and (Sen & Stoffa, 2013). The seismic inversion 

approaches can be divided into two groups considering the algorithm: the deterministic 

(matrix inversion) and probabilistic also named stochastic (Bosh et al., 2010).  

In the first group (deterministic), these methods are relatively straightforward to 

generate and are based on the minimization of the difference between a modelled seismic 

trace and the actual seismic trace. However, these types of inversions are often smoothed 

results, representing a best estimation within the limits governed by the bandwidth of the 

seismic data. For instance, areas where the reservoir layers thickness is much lower than 

about ¼ of the seismic wavelength the resulting inversion could be inaccurate for 
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quantitative interpretation (Simm & Bacon, 2014). Band-limited, colored inversion, 

sparse-spike and model-based are the most important and widely used deterministic 

algorithms for post-stack seismic inversion (Azevedo & Soares, 2017). 

 

Figure 13 – Illustration of sparse spike trace inversion showing how the inverted AI trace 

is a blocky simplification of the well impedance. From Simm & Bacon, 

(2014). 

Despite the well-known and widespread use of these deterministic methods, the 

quantification of uncertainty for deterministic methods is restricted. The only way to 

assess the uncertainty is by a linearization around the best fit inverse solution. For this 

reason, highly non-linear inverse problems such as pre-stack seismic inversion in 

complex geological environments could not be accurately resolved using the 

deterministic approaches (Tompkins et al., 2011). 

In the second group (stochastic), Bayesian and Geostatistical approaches could be 

included (Tarantola, 2005). However, in terms of computational requirements these 

stochastics approaches are much more demanding than deterministic methods (Bosh et 

al., 2010). To begin, the first stochastic method mentioned Bayesian guarantee the 

propagation of the uncertainty guide by the prior probability distribution of data (e.g. 

well-log data), and extrapolated to the probability distribution of the model parameters 

space (Grana et al., 2012). Once the framework is constrained, the linearity assumptions 

of the deterministic possible solutions are overcome (Buland & Omre, 2003). 

Nevertheless, the uncertainty evaluation in this method is clearly conditioned on the 

parameterization of the inverse problem such as, the spatial continuity pattern and the 

prior distribution (Scales & Tenorio, 2001). Continuing with the stochastic methods, 
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Geostatistical approaches use a probability density function (PDF) on the model 

parameters space to resolve the inverse solution (Bosh et al., 2010). Generally, the 

sampling of the model parameters to reach an inverse solution is made by Monte Carlo 

or geostatistical sequential simulation taking into account global optimization algorithms. 

 

Figure 14 – Shows the P-wave, S-wave and density solution from a Linearized Bayesian 

Inversion in the in-line 1627. From Buland & Omre, (2003). 

 

Overall, stochastic approaches could get decent seismic inversion results, but 

often in the case of using the complete Aki-Richards equation the approximation could 

not deal in appropriate manner for not accurately seismic processed angle (above critical 

angle), and in the rock-physics domain could fail for highly nonlinear models such the 

soft sand model or homogenous fluid mixtures (Grana, 2016). As a consequence, for 

nonlinear inverse problems obtaining a close-form solution is difficult, unless the 

adoption of a numerical method. For this reason, in the case of non-linear inverse 

problems, methods such ensemble-based can be capable of obtaining outstanding results. 

Using a pre-stack data from particular area of the Norne field in North Sea (Liu & Grana, 

2018) obtained excellent result in the seismic inversion with the ES-MDA methodology 

and even compared to a Bayesian AVO linearized approach that use the same set of data. 

For this reason, this study adopts the same approach to get the most reliable inverse results 

of the petro-elastic properties and related these with a facies distribution.  
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Figure 15 – Inversion results of elastic properties, from top to bottom: P-wave velocity, 

S-wave velocity, and density (the black arrows indicate the well location). 

From Liu & Grana, (2018). 

Latest computational advance have emerged many other seismic approach such 

as those based on machine learning algorithms, which used a kind of optimization 

procedure to guarantee convergence with the known seismic amplitudes and in many 

cases constrained by a geological information. For example, (Alfarraj & Ghassan, 2019) 

propose a workflow using a neural-network-based inversion model to invert seismic data 

for elastic impedance (𝐸𝐼) using well-log data to guide the inversion result. In the case of 

prior information is sparse, for instance where seismic events corresponding to reflectors 

of interest remain to be identified, Simulated Annealing inversion could deal with this 

sparsity of data to resolve the seismic trace inversion problem (Mosegaard & Vestergaard, 

1991) using the global optimization technique of simulated annealing to provide results 

that best-fit the seismic guided by an input model. 
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4.2 Seismic Facies Classification 

Seismic facies classification was applied by (Mukerji et al., 1998) using data from 

North Sea. The acoustic impedance (𝐼𝑝) and elastic impedance (𝐼𝑠) from seismic inversion 

were used to estimate the probability occurrence of each facies. The authors applied three 

different approaches for facies classification and one of them is similar to what is called 

Bayesian classification. The estimation of the conditional PDFs 𝑃(𝑓𝑎𝑐𝑖ⅇ𝑠|𝐼𝑝, 𝐼𝑠) was 

obtained from seismic inversion results using the near and far offsets at the wells location 

and the facies already known of these wells. This leads in a tri-variate distribution with 

two continuous variables (𝐼𝑝 and 𝐼𝑠) and a categorical (𝑓𝑎𝑐𝑖ⅇ𝑠). These distributions were 

estimated using a non-parametric approach (kernel density estimation). Based on the 

authors’ comments, the results were satisfactory not only for obtaining the most probable 

facies, but also for the probability of each of them, enabling an uncertainties analysis. 

Recent studies in Brazil have been published applying this methodology to 

carbonates of the pre-salt (Texeira et al., 2017); (Penna et al., 2019); (Penna & Lupinacci, 

2020). For instance, Texeira et al. (2017) presented a 2D Bayesian classification to 

discriminate carbonates with good porosity, closed carbonates and clayey-carbonates 

using the elastic parameters of acoustic impedance (𝐼𝑝) and 𝑉𝑝/𝑉𝑠 ratio which were 

generated from elastic inversion. The first parameter proved to be sensitive to porosity, 

while the second proved to be more sensitive to mineralogy, enabling the classification 

of these three types of facies using seismic data. 

Also studies where different kinds of gaussian distribution (Single Gaussian and 

Gaussian Mixture) were performed to link between elastic and petrophysical properties, 

each of these gaussian components is related to different geological lithofacies. Then a 

Bayesian approach for seismic inversion to estimate acoustic, impedance and lithofacies 

of subsurface conditioned to post-stack seismic and well data were computed (Figueiredo 

et al., 2017). 
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Figure 16 – Probability of reservoir facies and the more likely facies using two different 

distribution approach; Single Gaussian in A, B and for Gaussian Mixture in 

C, D. From Figueiredo et al. (2017). 

Another common approach is the use quantitative seismic interpretation, and more 

specific Rock physics which establishes the relationship between elastic attributes and 

reservoir properties. Grana & Dvorkin (2011) carry out a seismic elastic inversion on 

seismic data to arrive at volumes of 𝐼𝑝 and 𝐼𝑠, then a rock physic model is made at well 

to link the elastic properties to different rock and fluid properties.  

 

Bayesian linearized 
elastic inversion

Rock facies 
classification

Rock properties 
estimation
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Figure 17 – Workflow of seismic facies classification. (a) Seismic data are used to obtain 

the probability elastic attributes, such as the P- and S-wave impedance, using 

a Bayesian linearized elastic inversion. (b) A rock physics model is fed into 

the resulting elastic attributes volumes to produce the volumes of rock 

properties probabilities. (c) Rock facies are classified at a well, and this 

classification, together with rock properties, is used to produce a facies 

probability volume. From Grana & Dvorkin, (2011). 

An application of Bayesian facies classification to igneous rock identification 

using stochastic seismic inversion in the presalt interval of Santos Basin was presented 

by Fernandes et al. (2024). The study used the ES-MDA algorithm to get an acoustic 

impedance seismic inversion. Then, facies related to igneous rock using a priori 

probability were modelled, Figure 18. The results are in good agreement with the ones 

observed in the wells according to authors. 

 

Figure 18 – Seismic section crossing Well B showing: (a) the 𝐼𝑝 of stochastic inversion 

from realizations P50, and (b) their respective igneous occurrence probability 

estimated in Bayesian classification from P50. The lime green line represents 

the Pre-Jiquiá Unconformity, the blue line is the Pre-Alagoas Unconformity, 

and the magenta line is the Base of Salt. Adapted from Fernandes et al. 

(2024). 

 

  

(a) (b)
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5 METHODOLOGY 

The seismic quantitative interpretation of siliciclastic reservoirs in this specific 

area of the Camisea sub-basin uses two kind of data original and interpreted (derived from 

a second process). The original data consists of well-log data and conditioned pre-stack 

seismic data. Moreover, the interpreted data consists of an accurate seismic well tie, 

seismic horizons interpretation, generation of low frequency models of each property (𝐼𝑝, 

𝐼𝑠 and ⅆⅇ𝑛𝑠𝑖𝑡𝑦), and facies definition. The workflow of the seismic quantitative 

interpretation is represented in the Figure 19. The seismic interpretation was made using 

a Petrel software, and both the stochastic seismic inversion and seismic Bayesian 

classification was made using a Python open-source programing language. 

 

Figure 19 – Schematic workflow of the seismic quantitative seismic interpretation apply 

to the reservoir in Kinteroni field. 

A careful seismic well tie initiates the study in order to get more reliable relation 

between seismic and well log data, this process identifies the best amplitude reflections 

related with the intervals of the main reservoirs. Moreover, a crucial step was the upscale 

of well data using the Backus algorithm (Backus, 1962) with a frequency of 80 Hz and 5 

meters sampling. The seismic crop area has three wells which are located along the 

highest part of the structure, all of them were used in the building of low frequency models 

using a geostatistical technique with both migration velocities and well velocities data 

(Soares & Azevedo, 2018). To point out, the seismic crop includes 560 milliseconds in 

two-way traveltime thickness, 684 inlines (inline) and 285 crosslines (xline), with vertical 

sampling rate of 2 milliseconds and lateral sampling rate of 15 meters. 
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By this time, stochastic non-linear seismic inversion will be performed using 

previous information using the ES-MDA algorithm in time domain. After that, using the 

upscaled well-log data of 𝐼𝑝 and 𝑉𝑝/𝑉𝑠 ratio conditioned to facies interpretation a PDFs 

was built. Then, the same PDFs used the seismic inversion results to carry out the 

Bayesian facies classification. 

A detailed description of each part will be addressed in the following sections, 

such as seismic well-tie, low frequency model building, stochastic non-linear seismic 

inversion application and Bayesian facies classification. 

5.1 Seismic Well Tie 

In this subtopic the Seismic Well Tie process is described, the data of three Wells 

have been reviewed and analyzed during this stage. A comparison of sonic logs and 

checkshot information for each one of the calibration wells (K1, K2 and K3), shows that 

velocity trends were properly measured and corrected especially in the target zone of the 

study.  

Figure 20 shows panels for each calibration well used in this study where sonic 

velocities are display in blue while checkshot in grey line colored by its value range. The 

group of horizontal lines represents different tops at the target zone framed between 

Lower Chonta at the top and Copacabana at the bottom of the sequence. An important 

observation is that the Nia, and Noi sandstones reservoirs are characterized by low 

velocities compared to high velocity trend characteristic of shale rocks. Hence, low 

impedance value is expected to be associated with sand lithology. 
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Figure 20 – Comparison between sonic velocity (blue line) and checkshot interval 

velocity at K2, K1 and K3 wells 

In addition, an analysis of the poroelastic properties helps to determine the 

limitations in resolution due to frequency content of the seismic (PSTM seismic data in 

this case). Such analysis is represented also as log curves but at a resolution compared to 

seismic; also known as log curves at seismic scale. The results help to determine the 

degree of detail that we can expect to achieve through methods of seismic inversion. 

The following Figure 21 show the poroelastic curves such as 𝑉𝑝, 𝑉𝑠, 𝐼𝑝, 𝐼𝑠, 𝑉𝑝/𝑉𝑠 

and density at seismic scale (blue) and log scale (grey) for K2 well. Seismic scale log 

curves have been generated based on dominant frequency of PSTM seismic data using 

the Backus average calculation, and not as simple smoothing of the curves. These sets of 

curves have been provided as input in the seismic inversion process. Note that the high 

frequency detail observed at log scale is largely reduced in logs at seismic scale. Also, the 

Figure 21 shows tops of relevant units within the zone of interest from Upper Nia to 

Copacabana. The Backus average shows important characteristics in the poroelastic curve. 

For instance, the anhydrate layer above and shaly carbonate layer bellow Lower Nia is 

characterized as a high impedance interval but with a much lower increase in shear velocity 

that results in a characteristic decrease in 𝑉𝑝/𝑉𝑠 ratio associate mostly to sand intervals, 

particularly appreciate at well K2 (figure 21). 
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Figure 21 – Poroelastic curve at seismic scale (blue) and log scale (grey) for well K2 

Post-stack calibration was performed for each calibration well included in the 

seismic crop volume. The methodology used sonic, density logs and checkshot 

information. A 25 Hz zero phase Ricker wavelet was used as a first approach to generate 

a synthetic trace and then replaced by an average of statistical wavelet from K2, K1 and 

K3. In order to evaluate the process, a cross-correlation method is used to compare the 

resulting synthetic trace to a composite trace that is extracted along the path of the 

deviated wells.  

All statistical wavelets extracted from the three wells are almost identical, Figure 

22 shows a comparison between the average statistical wavelet extracted from the seismic 

stack and Ricker wavelet. This allows for a closer reproduction of seismic character in 

the synthetic trace at the zone of interest. 
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Figure 22 – Comparison between the statistical average from three wells (blue) and Ricker 

wavelet 25 Hz (dashed black line) 

Overall, very little adjustments were introduced to checkshot curves in order to 

match reflections with corresponding well tops. Special emphasis was applied to match, 

Lower Chonta, Upper Nia, Middle Nia, Lower Nia, Shinai, Lower Noi and Copacabana. 

In particular, Lower Noi and Ene reservoirs were comprised within half a cycle of seismic 

reflection due to their thickness are bellow seismic resolution. 

Figure 23 shows a composite panel of log curves from left to right including 

gamma ray, velocity, density, reflection coefficient, statistical extracted wavelet, 

synthetic trace, extracted stacked trace from seismic data, and also geologic markers 

(tops) are included. For the study purpose the extracted wavelet was carried out with a 

statistical approach. 
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Figure 23 – Composite panel showing different well-log curves, statistical average from 

well K2, seismic amplitude at well location and synthetic amplitude from 

well-log data. 

In general, the K2, K1 and K3 wells show reasonable match between seismic and 

synthetic trace. A method to evaluate the degree of correlation is the use of Pearson 

correlation coefficient (PPC). For instance, the arbitrary seismic line of stacked data 

where both the well path and synthetic is plotted in the Figure 24, also showing the PCC 

value of 0.71. For reference, tops (white circle) and seismic horizons (black line) overlain 

the arbitrary seismic line along the K2 well path. Observe an acceptable match of seismic 

events between synthetic from K2 well and stacked seismic data. 

Lower Nia

Shinai

Upper Noi

Middle Nia
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Figure 24 – Arbitrary seismic line along the path of the deviated well K2 showing the 

match between seismic and synthetic log. 

5.2 Low Frequency Model building 

In this study, low frequency models for P- and S-Impedance, as well as for density 

were required to be generated as prior information. The first approach to build a P-

Impedance model comes from the use of velocities from migrations (PSTM velocities), 

where RMS velocities were converted to interval velocities using Dix approach. As a 

quality control the Figure 25 includes from Lower Chonta to Copacabana horizons; also, 

along the well path selected tops are displayed as reference (Upper Nia and Copacabana). 

The displays showed that RMS velocity distribution is not conformable with geometry of 

the geologic structure that amplitude information shows.  

 

COPACABANA

LOWER NOI

SHINAI

LOWER NIA

MIDDLE NIA

UPPER NIA

LOWER CHONTA

528
660

504
682

479
704

454
726

430
749

405
771

380
793

356
815

331
838

306
860

282
882

XLine 280 XLine 340 XLine 357

XLine 357

XLine 380

XLine 380

XLine 400

XLine 400

XLine 420

XLine 420

XLine 455

XLine 455

K3D

K1D

Inline 650

Inline 650

XL
IL

W E

-1300

-1350

-1400

-1450

-1500

-1550

-1600

-1650

-1700

-1750

-1800

-1850

-1900

0 500 1000m

1.7

Ti
m

e 
(s

)

1.4

1.5

1.6

1.8

K2          

PCC: 0.71          

+

-

Ti
m

e 
(s

)

K1          

K2          K3          

+

-

Upper Nia

Copacabana

Upper Nia

Copacabana

Reverse fault         

Upper Nia

Copacabana

1.7

1.4

1.5

1.6

1.8

Velocity



53 

Figure 25 – RMS seismic velocity does not follow geometry of seismic amplitudes, and 

values of RMS are below real velocity from well-log data in the interval of 

interest, warn and cool colors means high and low velocity respectively. 

Extraction of interval velocity curves from PSTM velocity field at each calibration 

well was done to check accordance with well data log and checkshot information. Figure 

26 shows a composite panel of Kinteroni wells with different velocity profiles; sonic 

velocity at well-log and seismic scale are shown in grey and light-blue respectively, RMS 

velocity field from PSTM are shown in green and extracted velocities from interval 

velocity field from PSDM processing are shown in red.  

In general, extracted RMS velocity (green) or extracted interval velocity from 

PSDM velocities (red) do not match closely the well measurements. The RMS velocity 

seems to be underestimating and the interval velocity not to accurately adjust to wells. 

 

Figure 26 – Trend of RMS velocity from PSTM (green) and interval velocity from PSDM 

(red) compared to well velocities at each Kinteroni well at well-log (grey) and 

seismic (light-blue) scale. 
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As a result of the quality control in velocity trends from seismic and well log data 

that do not match the trends between them, a Low frequency model using geostatistical 

modeling was used by combining both migration velocities (PSTM and PSDM) and well 

velocities. The resulting low frequency velocity model provides a better match to trends 

observed at each calibration well. Figure 27 shows in the left part extracted LFM acoustic 

impedance curve (red), which overlays upscaled 𝐼𝑝 from well-log (black) extracted at 

specific interval window for K1 well. Also, in the right part the LFM of 𝐼𝑝 at inline 716 

and well K1 path and key tops (Upper Nia, Lower Nia, and Copacabana). 

 

Figure 27 – In the left part, upscaled well-log (black) and LFM (red) curves of 𝐼𝑝. In the 

right part, Low frequency model (LFM) of acoustic impedance in the inline 

716 and well K1 path and key tops. 

The modelling of the low frequency P-velocity model was the first step to build 

all the suite of models needed for seismic inversion. The resulting P-impedance, S-

impedance and density low frequency models (LFMs) are based on a combination of 

geostatistical modeling and rock physics trends that relate P and S velocity information 

to density.  

At this point of the study, conditioned angle gather stacks (conditioned in 

waveform and spectra) have been generated, wells had been calibrated, wavelets have 

been statistically extracted from conditioned angle stacks, and low frequency models 
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were also built. Consequently, all the elements to conduct a Stochastic seismic inversion 

were satisfied. 

5.3 Stochastic non-Linear Seismic Inversion application 

In this section, an explanation of the seismic inversion process based on ES-MDA 

applied to a seismic reservoir characterization study in the Ucayali basin is described. The 

available data for the study includes a set of well-log data, and three partial angle stacks 

(near, middle, and far stack corresponding to  12°, 24°, and 36° respectively). Figure 28 

shows the seismic inline 716 of the near, middle, and far angle stack across the well K1. 

 

Figure 28 – In the left part, an overlain of seismic partial-stacked extracted of near, 

middle, and far trace with incident angles of 12°, 24° and 36° respectively at 

[inline 716; trace 150] position, and in the right part the seismic inline 716, 

from top to bottom: near angle stack (12°), middle angle stack (24°), and far 

angle stack (36°). 

The method consists in the use of stochastic nonlinear inversion framework of 

three partial angle stacks (near, middle, and far) based on the ensemble smoother with 

multiple data assimilation (ES-MDA) to estimate elastic reservoir properties with the 
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measurement of the uncertainty. The stochastic seismic inversion process implemented 

in the study can be described as follows: 

•  ① Generate an ensemble of 𝑁𝑒 initial models of elastic properties (P-wave 

velocity, S-wave velocity and density) using geostatistical methods to 

account for the spatial correlation related to the underlaying geological 

continuity. 

•  ② Compute the elastic and seismic response (predicted data 𝐝𝑝) for each 

model in the initial ensemble using the full Zoeppritz equations. 

•  ③ Re-parameterize the predicted data using SVD (Singular Value 

Decomposition) and obtain a set of 𝑁𝑠 singular values 𝜆𝑝 and singular 

vectors 𝐮𝑝. 

•  ④ Apply the ES-MDA algorithm with Equation (3.10) and (3.11) in 

which the data 𝐝 with the re-parameterized vector of singular vectors 𝐮, to 

update the model parameters 𝐦. 

 𝐦𝑗
𝑢 = 𝐦𝑗

𝑝 + 𝐂𝐦𝐮
𝑝 (𝐂𝐮𝐮

𝑝 + 𝐂𝐮)−1(𝐮̃𝑗 − 𝐮𝑗
𝑝) (5.1) 

 

• Repeat steps from ② to ④. 

•  ⑤ After 𝑁 iterations, generate the statistics (mean and covariance matrix) 

of the posterior distribution of model parameters 𝑓𝑚|𝑑(𝐦|𝐝) conditioned 

by the seismic. 

Before to apply the seismic inversion process, seismic information should be 

loaded and analyzed. In this case, a seismic crop was selected, which is a portion of a 3D 

seismic survey and is available in Perupetro database (bancodedatos.perupetro.com.pe).  

Another necessary input in the workflow was the building of the LFMs (P-wave 

velocity, S-wave velocity, and density) using geostatistical techniques for this area based 

on both migration velocities and smoothed well log data following the low frequency 

trend of 0-8 Hz. The Figure 29 shows the LFM in time domain that was built in a specific 

time window between Upper Nia Fm. and Copacabana Fm. as top and bottom 

respectively. The coding workflow requires that pre-stack seismic volumes have the same 

geometry of the LFMs of P-wave velocity, S-wave velocity and density. 
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Figure 29 – Similar geometry of partial stacks and LFMs is required. The left part of the 

figure presents the input (seismic partial angle stack) of the seismic inversion, 

and the right part shows the low frequency models of (𝐼𝑝, 𝐼𝑠, 𝜌) at inline 716. 

Coupled with the average statistic wavelet from the Kinteroni wells, the 

information is enough to run iterations on all traces seismic. To be more specific, the 

whole workflow will be applied individually to each trace and then move on to the next 

trace. The process needs the generation of vertical spatial correlation based on Monte 

Carlo simulations (Dvorkin et al., 2014); (Fernandes & Lupinacci, 2021) to grab geology 

patterns. In these simulations, a premise is considered that samples that are close in time 

have better correlation. Thus, the tendency for samples far away from others is to become 

less correlated. All of the above provides the possibility to introduce a geological 

continuity premise to the simulations that are generated from random values. 
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In light of the foregoing, the workflow of the seismic inversion begins with the 

generation of 300 initial elastic models by stochastically sampling from the prior model 

space. will be aborded in following section, the initial ensemble number of models is 250, 

the retained singular values computed from the collocated seismic trace is 30, and the 

number of updating iterations is 4. Overall, stochastic prior models converge to the actual 

well logs and their means of the posterior ensembles shows a satisfactory agreement with 

corresponding elastic properties.   

The associated model uncertainty can be quantified using the pointwise empirical 

variances calculated from the updated ensemble members. Compared to the synthetic 

case, the results show a larger variability in the posterior realizations; furthermore, it is 

noticed some inaccurate predictions of the elastic properties, fortunately in small portions 

of the reservoirs. Such inaccurate predictions are probably due to the limited resolution, 

low frequency (i.e. far angle stack) and low SNR of seismic data that do not allow to 

capture the local variability of elastic properties in thin layers, as well as erroneous values 

of density and sonic log data that does not match the real rock values, especially in the 

layer with high content of shale that produce washout intervals. (Liu & Grana, 2018); 

(Fernandes et al., 2024) present detailed studies where mathematical concepts were 

covered. 

The results of the seismic inversion were P-Impedance, S-Impedance and Density, 

with P-impedance being the attribute with more accuracy and density the one with less 

accuracy. Also another volume that was generated as the result of the pre-stack inversion 

were 𝑉𝑝/𝑉𝑠. At this stage of the study, we are ready to apply a Bayesian facies 

classification and explore relationships between inverted elastic volumes and seismic 

facies characterization inside the reservoirs. 

5.4 Bayesian Facies Classification 

The defined lithofacies in this study were based on information from well log and 

core data. The main reservoir zones (Upper Nia, Lower Nia and Noi-Ene) present two 

types of lithofacies sandstone and fine sandstone. Sandstone facies present good porosity 

values, followed by fine sandstones which are considered reservoirs with medium to low 

porosity values. The non-reservoir zones which overlie most of the reservoir facies are 

composed of shale facies with content of carbonate and anhydrate. 
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A preliminary Rock physics approach allow to correlate poroelastic parameters 

with facies. This analysis represented an important step in the reservoir characterization 

(Ødegaard & Avseth, 2004). The main objective is the use of the relation using well log 

data and then extrapolate that relationship using the seismic volume result from seismic 

inversion such Ip, Is, and density. 

The analysis of compressional and shear logs, which are derived from sonic logs 

is a fairly routine to get a clue of trend lines related to specific facies such sandstone and 

shale. Generally, trends of 𝑉𝑝 and 𝑉𝑠 are well defined because factors such as porosity, 

pore shape and pressure tend to affect 𝑉𝑝 and 𝑉𝑠 similarly (Castagna et al., 2014).  

Figure 30 shows acoustic-log 𝑉𝑝 and 𝑉𝑠 measurements of the three wells included 

in the study (K2, K1 and K3) from Upper Nia and Copacabana formation top, which is 

the reservoirs target colored by a type of facies. The dash line separates into two zones 

the behavior of the measurements, above the line related to sandstones facies and the 

bellow the line mostly related to shale, carbonate, and anhydrite facies. As a first glance, 

the Crossplot indicates that both curves can be used to predict at least two groups of facies. 

 

Figure 30 – Crossplot of Acoustic-log measurements of 𝑉𝑝 and 𝑉𝑠 of the K2, K1 and K3 

wells colored by specific facies interpretation. 

Sandstone 
zone

Shale & Carbonate 
zone
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Another valuable tool for both QC and interpretation purposes of well log data 

,and in order to assess seismic detectability is the use of the Crossplot between acoustic 

impedance 𝐼𝑝 and 𝑉𝑝/𝑉𝑠 ratio (Ødegaard & Avseth, 2004), the Figure 31 shows these 

curve colour coded based on the five populations defined in the Crossplot domain. A 

noticeable behavior in the scatter data is the possibility to add a line bound which 

separates the sandstones zone from the shale & carbonate zone. Additionally, an 

anhydrate zone constitutes a small and clearly separate cluster in the high Ip. 

𝐴𝐼 and 𝑉𝑝/𝑉𝑠 estimates are among the typical outputs from elastic inversion of 

seismic data, and this is the main reason for presenting this analysis to evaluate the 

affordability to classify facies from seismic data, more specifically elastic inversion 

results. 

 

Figure 31 – Crossplot of Acoustic-log measurements of 𝐼𝑝 and 𝑉𝑝/𝑉𝑠 for the three wells 

in the study (K2, K1 and K3) colour-coded by specific facies interpretation. 

The probability density functions (PDFs) related to each facies were built at the 

beginning using a Gaussian approach and then improved by the use of Kernel approach 

to borehole log data upscale to seismic sample resolution (two millisecond). Additionally, 

Kernel bandwidth was defined using the Scott’s rule (Scott, 2014). The Figure 32 shows 

the PDFs of 𝑉𝑝/𝑉𝑠 ratio using density Kernel estimation where different degree of overlain 

Sandstone 
zone

Shale & Carbonate 
zone
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between lithofacies can be observed. Nevertheless, a kind of two population reservoir and 

non-reservoir related to sandstone and shale respectively can be identified.  

 

Figure 32 – Probability density functions (PDFs) of 𝑉𝑝/𝑉𝑠 ratio using density Kernel 

estimation for lithofacies from Upper Nia to Copacabana formation 

In the case of acoustic impedance (𝐼𝑝) the PDFs show three different groups 

related to a specific range of 𝐼𝑝. In the Figure 33 can be identified a much bigger 

population of sandstone facies that overlies a small portion of fine sandstone. Also, 

carbonate and fine sandstone seems to be overlaid with the same density population. 

 

Figure 33 – Probability density functions (PDFs) of acoustic impedance (𝐼𝑝) using density 

Kernel estimation for lithofacies from Upper Nia to Copacabana formation. 
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Bayes’s theorem is a fundamental concept in probability theory and statistics, the 

posteriori distribution depends upon the priori probability of facies occurrence. A 

common practice is to assign the same probability of chance for each individual facies 

group. Thus, the posterior distribution will be defined by the PDFs.  

The first attempt at least with well-log data demonstrated the possibility to 

characterize reservoir and non-reservoir, the strategy to merge all lithofacies into two 

groups is supported by the possibility to be predicted using Baye’s theorem according to 

the aforementioned crossplot analysis in Figure 30, Figure 31, Figure 32 and Figure 33. 

The analysis concludes that both facies group, such as reservoir a non-reservoir 

can be separated using both elastic properties 𝐼𝑝 and 𝑉𝑝/𝑉𝑠 ratio, Figure 34. Moreover, the 

PDFs for both facies groups using the elastic properties seem to be separated from each 

other and also follows the line bound previously discussed. 

 

Figure 34 – Crossplot of Acoustic-log measurements of 𝐼𝑝 and 𝑉𝑝/𝑉𝑠 for Kinteroni wells 

colour-coded by reservoir and non-reservoir facies interpretation, and the 

PDFs considering both variables. 

A visual result of  the Bayesian facies classification in the K1 is shown in Figure 

35, the reservoir and non-reservoir facies are well predicted. The prediction supports the 

Reservoir
zone

Non-reservoir
zone
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possibility to obtain a framework of reservoir and non-reservoir zone which is also well 

defined using only seismic amplitude interpretation due to seismic amplitude quality. 

 

Figure 35 – Bayesian facies classification of K1 well using upscale Ip and Vp/Vs shows 

excellent results in the posterior facies. 

Overall, Bayesian facies classification presents excellent results validated by the 

confusion matrix values in the three wells. According to the confusion matrix, the 

reservoir facies obtain 0.86 of true positive which means 14% of facies reservoir were 

incorrected predicted. On the other hand, the non-reservoir facies get 0.80 of true negative 

which means 20% of non-reservoir were incorrected predicted. 

Lower Nia          

Shinai

Middle Nia

Upper Noi          
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Figure 36 – The graphic shows (a) Confusion matrix of the result in the three wells of 

Kinteroni, (b) observed predictions results. 

Despite the previous excellent results, the prediction of reservoir from non-

reservoir facies could also be related to a geological framework. For instance, more than 

95% of content in Lower Nia could be considered reservoir facies, which means if the 

geology framework were accurately defined as it is, it would be easy to say that at least 

95% could be related to reservoir facies. A more challenging task and innovative will be 

the possibility to characterize at least in the two facies (sandstone and fine sandstone) the 

reservoir facies which be restricted to the Upper Nia, Lower Nia, and Noi-Ene zones. 

Figure 37 shows the crossplot of acoustic-log measurements of 𝐼𝑝 and 𝑉𝑝/𝑉𝑠 for the three 

wells in the Kinteroni area (K1, K2 and K3) considering only data from the reservoir 

zones. Data points are colour-coded by reservoir facies (sandstone and fine sandstone), 

grey color represents data outside the upscale process. The resulting PDFs will be used 

to predict these two group of facies in the reservoir intervals using the seismic inversion 

outputs. 

(a) (b)
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Figure 37 – Crossplot of acoustic-log measurements of 𝐼𝑝 and 𝑉𝑝/𝑉𝑠 for Kinteroni wells 

colour-coded by reservoir facies (sandstone and fine sandstone), and the 

PDFs considering both variables, grey points represents well-log data outside 

the upscale process. 
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6 RESULT AND DISCUSSION 

The whole workflow gives different kinds of outputs and results that will be 

described in this section. Figure 38 shows the seismic crop, wells localization, and seismic 

lines. In order to explain the geological and structural complex of the area an arbitrary 

seismic line 1 along the three wells in Kinteroni field (K2, K1 and K3) from west to east 

are presented. However, the focus area in this study is a seismic crop (blue polygon) that 

contains the K1, K2 and K3 wells. Inside the seismic crop, two arbitrary seismic limes 

and a crossline along their well surveys are presented as well. 

The objective of the selection of these seismic limes is to show variability of rock 

properties using the seismic inversion results combined with a Bayesian facies 

classification approach. 

 

Figure 38 – Show the seismic crop where is possible to observe the highest part of the 

anticline and the seismic lines (red lines) to analyze the stochastic seismic 

inversion and the Bayesian facies classification results. 
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6.1 Quantitative Validation of Stochastic Inversion 

6.1.1 Correlation Coefficient of Wells – Synthetic case 

At the beginning of study, a preliminary 1D approach was done to demonstrate its 

feasibility using the set of wells from K2 well. Moreover, where both deterministic and 

stochastic seismic inversion were done to analyze its results and evaluate its advantage. 

This real case contains several layers of clastic reservoir separated by zones of 

clay. The clastic reservoirs are filled with gas with a low percentage of water saturation 

and a high porosity brine layer in the base. The other important information is shown in 

the left part of Figure 39 where an overlain of seismic partial-stacked extracted from near, 

middle, and far corresponding to three different range of incident angles: 12°, 24° and 

36° respectively at [inline 716; trace 150] position. On the right part, the middle partial-

stacked traces of inline 716 is presented where a peak and trough is represented by blue 

and red color respectively. 

 

Figure 39 – In the left part, an overlain of seismic partial-stacked extracted of near, 

middle, and far trace with incident angles of 12°, 24° and 36° respectively at 

[inline 716; trace 150] position, and in the right part the middle partial-stacked 

traces of the inline 716. 

 

Middle stack
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The numbers of initial models of P-wave velocity, S-wave velocity and density 

generated were 300. Those prior models were stochastically sampling from prior model 

space, which represent the initial ensemble in the workflow. To grab the geological 

behavior of the underlaying continuity of the area, a vertical correlation of the model 

parameters was included. In the study, an exponential variogram was selected with a 

correlation range of 30 meters. The set of initial models is presented in the Figure 40 and 

it is clear that  the model values cover the entire model space. 

 

Figure 40 – Prior elastic models, from left to right: P-wave velocity, S-wave velocity, and 

Density (black curve represent the actual well log data, grey curves represent 

200 prior models, red curves present the mean of the prior models) 

 

For each prior ensemble model of the elastic curves the full Zoeppritz equation is 

used to associate reflectivity coefficients and generate the corresponding synthetic 

seismic trace by convolving the wavelets and the reflection coefficients. Continuing with 

the workflow, a re-parameterization of the measured and predicted seismic data into lower 

dimension space by using SVD is applied to improve the computational time consuming. 

Then the ES-MDA algorithm is applied to the reduced data space to iteratively update the 
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prior poroelastic models. In this specific case the algorithm only needs to assimilate the 

data 4 times to get a reasonable match. The model of elastic properties is updated in the 

domain (-∞, +∞), the Figure 41 shows a reasonably good match between measurements 

and posterior result. 

 

Figure 41 – Posterior elastic models, from left to right: P-wave velocity, S-wave velocity, 

and Density (black curve represent the actual well log data, grey curves 

represent 200 prior models, red curves present the mean of the posterior 

models) 

There are several ways to measure the accuracy of a seismic inversion, linear 

correlation and room mean square error (RMSE) of the true model. In this case Pearson 

correlation coefficient (r) estimation was used to validate the uncertainty quantification 

in the posterior Table 1. 
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Table 1 – Shows the comparison between the two performed seismic inversion 

(Stochastic and Deterministic) using the upscaled well-log (time domain) of 

K1, K2 and K3 wells. 

The ES-MDA parameters choices and SVD method have direct implications in 

the seismic inversion result. For instance, the alternative proposed inversion depends on 

the number of iterations N, the number of truncated singular values Ns, and the number 

of ensemble members Ne. In this particular study, N was selected to be 4 after due to N>4 

shows an improvement in the RMSE but a substantial decrease in the coverage ratio. 

After several testing, 30 singular values were retained due to higher values does 

not impact the seismic inversion. Therefore, for lower values of singular values, the 

RMSE increases and the correlation decreases. In general, the larger the number of Ne, 

both the number of models and the computational cost increases. For this reason, after 

some testing (Ne = 200, 250 and 300) Ne equal to 250 was selected as a favorable choice.  

The study also compares the ES-MDA to the standard Bayesian linearized AVO 

inversion which is a well-known seismic inversion technique proposed by (Buland & 

Omre, 2003). This comparison uses the same well log dataset and seismic data from the 

three angle stacks: near, middle, and far stack with incident angles of 12°, 24° and 36° 

respectively. The inversion results by applying the ES-MDA nonlinear inversion (Figure 

41) measured against to the Bayesian linearized AVO inversion (Figure 42) seen to 

recover better the true well logs, implying a better accuracy of our proposed method. A 

better result with the proposed method using ES-MDA is supported by the nonlinearity 

of seismic forward models for large acquisition angles. Certainly, linearization of the 

reflectivity coefficient expression is generally accurate for small angles, but inaccurate 

for large angles where the exact model becomes nonlinear (Liu & Grana, 2018). 
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Figure 42 – Standard Bayesian linearized AVO inversion result, from left to right: P-wave 

velocity, S-wave velocity, and Density (black curve represent the actual well 

log data, red curves present the mean of the posterior models) 

An acceptable way to make a quantitative correlation was through the Pearson 

correlation coefficient using the upscale acoustic impedance of wells compared with the 

seismic inversion results. Wells inside the crop have acceptable values of the Pearson 

correlation coefficient (r), K3 has the lowest values due mainly to the nearly position to 

a fault reverse plane which reduces the signal of seismic reflections. Thus, by comparing 

the inversion results, the proposed inversion method using the ES-MDA algorithm 

recovers in better way the true well logs, indicating a better accuracy of our proposed 

method, Figure 43. 

In the study, one of main factors that improve the seismic inversion results 

according to the validation method was the conditioned log data used in the seismic well-

tie. On the other hand, a reduction in the coefficient of correlation is closely linked to the 

chosen seismic inversion parameters and maybe erroneous well log data for wellbore 

condition. 
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Figure 43 – The left part of the figure presents the input (seismic partial angle stack) of 

the seismic inversion, and the right part shows the outputs (𝐼𝑝, 𝐼𝑠, 𝜌) of the 

seismic inversion of the inline 716. 

 

6.1.2 ES-MDA Parameters 

6.2 Reservoir Characterization 

The study focuses on four main zones the Upper Nia, Lower Nia, Noi and Ene 

formation, which are the main reservoirs in terms of gas accumulation. For this reason, 

facies in those reservoirs should be accurately mapped. The Ene Formation, 

stratigraphically above Copacabana formation is considered as a fluvial environment due 

to its genesis, the contact between them is a well-known discordance in the region (Peña 

et al., 2018). 
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Above Ene formation is deposited Noi formation, which could be divided into two 

stages of Aeolian system. The Lower Noi in a wet regime and the Upper Noi in a dry 

regime, both have considerable good reservoir properties to store gas. Above Lower Noi 

is founded the Shinai formation, which is considered as a regional seal, sediments are 

deposited in a marine context. Finally, the Lower Nia formation which is the most 

important reservoir in terms of volume is deposited above the Shinai formation, most of 

sediments in Lower Nia is considering developed in an Aeolian system. 

The seismic crop used in the study were extracted in the highest part of a structure 

named Kinteroni-Sagari (Luque & Huamán, 2016), Figure 44. The anticline Kinteroni-

Sagari is a complex thin-skinned structure. The structure is part of a giant thrust wedge, 

hanging-wall anticlines (McClay et al., 2018b). 

In the area of the seismic crop, three directional wells were drilled. In order to 

evaluate the availability and benefits of the stochastic seismic inversion coupled with 

Bayesian facies classification to characterize the reservoirs in the area three seismic lines 

were analyzed, two of them cut the anticline (inline K1 and arbitrary line K3) and one of 

them is along the axis of the anticline parallel to the reverse fault (seismic xline 420). 
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Figure 44 – Location of the seismic crop where is possible to observe the highest part of 

the anticline and the seismic lines (red lines) to analyze the stochastic seismic 

inversion and the Bayesian facies classification results. 

The analysis in these sections allow us to understand the facies occurrence far 

away the wellbore and between them. Moreover, results in this study could guide and 

currently update facies propagation using only geostatistical methods. 

6.2.1 Seismic xline 420 

This interpreted seismic crossline 420 includes the K2, K1, and K3 wells, Figure 

45. The interpreted crossline 420 (NE-SW direction) is ubicated in the east part of the 

main anticline structure called Sagari-Kinteroni (Venturo & Huamán, 2013). The seismic 

amplitudes are represented by a range of colors from bright red to bright blue, where the 

peak is colored in bright blue and the trough is colored in bright red. Furthermore, the 

seismic image of the hanging wall structure (Kinteroni) shows good quality of signal, and 

the amplitude seems to be balanced across the wells. 

 

Figure 45 – Seismic inline 420 of the near stack [0-12°] shows the seismic horizons 

interpretation, the target zone between Upper Nia (green line) and 

Copacabana (black line), the position of the three Kinteroni wells, and also 

an excellent signal-noise ratio represented by the visual seismic quality. 

In the seismic interpretation is observed that the structure is in the hanging wall 

of an important reverse fault. This structure could be considered the east part of a unique 

large anticline (Sagari-Kinteroni) and its morphology is a little wavy due to the presence 

of small faults and pre-existing dune deposition in the Lower Noi formation (Grosso et 
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al., 2017). The aeolian dunes in the Lower Noi formation are the most notorious 

geomorphology seismic expression in the area. 

The seismic inversion results of the crossline 420 is shown in the Figure 46. An 

important layer of quality control is the anhydrate above the main reservoir of Lower Nia. 

The presence of this evaporite level is widely known and the values of the acoustic 

impedance are relatively high (values from 12000 to 13000 (𝑚/𝑠 ∗ 𝑔𝑐𝑐), it is marked in 

the upper right part of Figure 46.  

 

Figure 46 – The left part of the figure presents the input of the seismic inversion, and the 

right part shows the output of the seismic inversion of the crossline 420. 

The facies variations inside the reservoirs are difficult to predict considering only 

seismic amplitude information. However, the acoustic impedance 𝐼𝑝 coupled with the  
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𝑉𝑝/𝑉𝑠 ratio and Bayesian classification could map these facies heterogeneity. Runing the 

Bayesian facies classification using the seismic inversion results in the crossline 420 

identified different kind of accommodation in the three main reservoirs zone (Upper Nia, 

Lower Nia, and Noi-Ene) Figure 47. 

 

Figure 47 – Bayesian facies classification applied to seismic inline 420 using the elastic 

seismic inversion results of 𝐼𝑝 and 𝑉𝑝/𝑉𝑠. 

The seismic Bayesian facies classification applied to seismic crossline 420 shows 

interesting results. For example, the left part of well K3 in the Noi-Ene interval, it is 

possible to observe a level of fine-sandstone facies which could be linked to interdune 

deposits. Above this level, the present of sandstone facies is related to aeolian climbing 

mega dune. 

In the case of Lower Nia interval, the architecture of the aeolian seems to be 

temporally and spatially variable (dynamic) systems. The aeolian succession of Lower 

Nia is very similar to Permian Cedar Mesa Sandstone outcrop of  about 120 meters 

thickness in White Cayon, Utah (Mountney, 2006). The aeolian succession of Lower Nia 

is not just one continuous episode of accumulation but rather it is punctuated. Thus, the 

thickness of Lower Nia formation is composed of repeated aeolian accommodation 

sequences in a sequence stratigraphy context that are each separated by major horizontal 

bounding surfaces that represent super surfaces, so planation surfaces where the dune 

field was curtailed and planed off before the next sequence accumulated later on Figure 

48. 
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Figure 48 – Bayesian facies classification geological interpretation in Lower Nia using 

the elastic seismic inversion results of 𝐼𝑝 and 𝑉𝑝/𝑉𝑠. 

The well-log and core data from Kinteroni wells identified a middle section with 

a more heterogenous pattern showing intercalations between small dunes and damp to 

wet interdune facies. Thus, the deflationary super surface could be interpreted at the 

presence of fine sandstones facies and bound aeolian sequences where fine sandstone 

facies presents a decrement in the rock property quality compare to sandstone facies 

related to aeolian dune and sand-sheets (parallel-laminated sandstones) probably with less 

influence of water table in the system (Kocurek & Nielson, 1986). 

6.2.2 Arbitrary seismic line K3  

This seismic line is along the well path of K3 and shows an excellent signal-noise 

ratio with continuity of reflectors in the reservoir window of interest between the Upper 

Nia and Copacabana formation. 
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Figure 49 – Seismic Line along the survey of the K3 shows excellent signal-noise ratio, 

where peak and trough are represented by white and black respectively. 

The seismic inversion volumes (𝐼𝑝, 𝐼𝑠 and 𝐷ⅇ𝑛𝑠𝑖𝑡𝑦) of the arbitrary seismic line 

K3 is shown in the. The geology framework in the area has two important layers of quality 

control. First, the anhydrate above Lower Nia formation which represents an well-known 

evaporite level with high values of the acoustic impedance (values from 12000 to 13000 

(𝑚/𝑠 ∗ 𝑔𝑐𝑐), it is marked in the upper right part of Figure 50. The second layer is the 

Copacabana formation which is below the Noi-Ene zone, the P-impedance inversion 

result match so well with the high values from 12500 - 14000 (𝑚/𝑠 ∗ 𝑔𝑐𝑐) related to 

carbonates rocks of this formation. 
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Figure 50 – The left part of the figure presents the input of the seismic inversion, and the 

right part shows the output of the seismic inversion of the arbitrary seismic 

line K3. 

The seismic Bayesian facies classification applied to the arbitrary seismic line K3 

shows prominent and valuable information. For instance, in the Noi-Ene zone is possible 

to observe that fine sandstone facies could be associated with deposits of damp interdune 

which occur where the water-table is close to the interdune surface (Bristow & Moutney, 

2013), immediately above, the present of sandstone facies could be related to aeolian 

climbing and aggrading dunes or sandsheet deposits Figure 51. 

In the case of Lower Nia interval, fine sandstone facies are found in an intermedia 

level. In most wells at this middle section shows intercalations between small dunes and 
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damp to wet interdune facies. Thus, a deflationary super surface could be pointed at the 

presence of fine sandstones facies and bound aeolian sequences.  

 

Figure 51 – Bayesian facies classification applied to arbitrary seismic line K3 using the 

elastic seismic inversion results of 𝐼𝑝 and 𝑉𝑝/𝑉𝑠. 

 

6.2.3 Seismic inline K1 

This seismic line is along the survey of well K1, the seismic line corresponds to 

the inline 167 in the seismic survey. Figure 52 shows the near stack [0-12°] which 

presents an excellent signal-noise ratio and continuity of the reflector in the reservoir 

window of interest between Upper Nia and Copacabana formation. Also, well survey, 

tops and seismic horizons are included.  

The well is located in the hanging wall part of the structure, which corresponds to 

the highest part of the anticline. The trust fault plays an important role in the expression 

of the anticline and the seismic signal is also affected by the reverse fault plane mostly 

close to the plane. Despite the signal reduction close to the fault plane, the seismic signal 

in the anticline is reasonably high-quality to be used in seismic inversion process. 
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Figure 52 – Seismic XLine 716 which has the same direction of well K1 survey, the near 

stack [0-12°] shows excellent signal-noise ratio where peak and trough is 

represented by blue and red color respectively.  

The elastic seismic inversion result is presented in the Figure 53. The three 

volumes (𝐼𝑝, 𝐼𝑠, and 𝐷ⅇ𝑛𝑠𝑖𝑡𝑦) corresponds to the P50 which shows accurate visual result 

in tern of quality details. For instance, the top of Copacabana formation is well defined 

which is related to carbonate rocks with high values of acoustic impedance in range values 

from 12500 - 14000 (𝑚/𝑠 ∗ 𝑔𝑐𝑐). On the other hand, the Middle Nia formation also 

presents high values of acoustic impedance with values around 13000 (𝑚/𝑠 ∗ 𝑔𝑐𝑐) 

related to a level of anhydrate facies. 
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Figure 53 – The left part of the figure presents the input of the seismic inversion, and the 

right part shows the output of the seismic inversion of the inline 716. 

The seismic Bayesian facies classification applied to seismic inline 716 in Figure 

54 shows valuable information. For example, in the Noi-Ene zone is possible to observe 

that fine sandstone facies could be associated with deposits of damp to wet interdunes. 

In the case of Lower Nia, the well K3 in the middle section shows a predominant 

present of fine sandstone facies. On the other hand, the seismic Bayesian results could 

predict these fine sandstones with less proportion compared to well-log interpretation in 

this middle section . Thus, the presence of fine sandstones facies in the middle section of 

Lower Nia suggests accumulations under wet conditions or at least different to the upper 

section where sandstone facies could be associated with dune deposits with excellent 

reservoir properties suggesting dry conditions of the system. 
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Figure 54 – Seismic inline 716 along the survey of the K2 showing the Bayesian facies 

classification using the seismic inversion results. 

 

6.3 Future Perspective 

There is always room for improvement, this study could serve as a basis for some 

possible lines of research to be implemented. Seismic reservoir characterization should 

be a routine workflow to be done and methodologies associated with the topic of current 

study should continue, such as rock-physics model, fluid substitution, seismic 

petrophysical characterization, improving efficiency of seismic inversion algorithm and 

so on. For study purposes a portion of the total seismic survey was used, future tasks that 

include the whole seismic survey must be done, this would imply a significantly more 

computational resource. 

 Rock-physics model could provide an easy-to-use toolbox for lithology and pore 

fluid interpretation of well-log data and elastic inversion results. The analysis could 

provide scenarios, both in terms of lithology and fluid substitutions. Also, the calibration 

of local conditions to the rock physic model could add basis of the influence of geologic 

factors such as burial compaction, diagenesis, rock texture, lithology, and clay cement to 

seismic properties (Avseth et al., 2005). 
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Apart from rock properties, another main goal of seismic reservoir 

characterization is to predict fluid properties given a set of seismic measurements by the 

estimation of elastic properties. For instance, the estimation of petrophysical properties, 

such us porosity, clay volume and fluid saturations, can also be formulated as an inverse 

problem and is generally referred to as rock physics inversion or petrophysical inversion 

(Grana, Azevedo, Figueiredo, & Mukerji, 2022). It is a more challenging work and needs 

to add all possible data to remove the bias in likelihood PDFs caused by zones far away 

of well-control, an alternative is the generation of pseudo-wells in those zones. Authors 

such as Dvorkin et al. (2014) and Fernandes and Lupinacci (2021) show the steps for 

generating spatially correlated pseudo-wells. With these pseudo-wells, the electrofacies 

likelihood PDFs could represent a better separation and, consequently, less confusion 

between them. 

In recent decades, seismic inversion has been successfully extended to a kind of 

statistical framework for assessing the uncertainty of inferred 3D surface elastic models, 

which is one of the major limitations of deterministic inverse procedures. Unfortunately, 

these alternatives of elastic inversion algorithm are computationally expensive and only 

used in academia and not in the day-to-day life of the oil industry (Azevedo & Soares, 

2017). Therefore, their development and implementation give the opportunity to be 

evaluated and shown the benefits that this type of approach brings to the reservoir 

characterization. This study is one of the academy purpose among others (Fernandes et 

al., 2024). Further steps are feasible, such as the study presented by Grana et al. (2023) 

the study introduces the Markov chain Monte Carlo (MCMC) approach where complex 

prior models, such us multiple-points statistics simulations based on a training image 

were introduced to generate geologically realistic facies realizations. On the other hand, 

Ni, et al. (2024) presented a geostatistical seismic inversion method constrained by a 

seismic waveform. The correlation coefficient of seismic data is used to measure the 

similarity of the seismic waveforms, replacing the traditional variogram for sequential 

Gaussian simulation. Under the Bayesian framework, the MCMC algorithm is combined 

with the constraints of seismic data to randomly perturb and optimize the simulation 

results for obtaining the optimized parameter inversion results. 

Any alternative way to improve the efficiency in the workflow is an opportunity 

of research. In the same row, several ways to optimize the objective function in 

geostatistical inversion were shown by Azevedo & Soares, (2017). A further step in the 



85 

workflow of the study is the implementation presented by Liu & Grana, (2019), they use 

a very common optimizer in machine learning for the objective function, which is ADAM 

(Adaptive Moment Estimation). The development of these types of algorithms brings 

interesting perspectives for future academic work. For this reason, Python programing is 

an essential tool for students and geosciences nowadays. 
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7 CONCLUSSION 

This study showed a workflow for integrating information at scales of well-log 

and seismic for the characterization of sandstone reservoirs of a Kinteroni field in the 

Ucayali Basin using the Python programming language. The workflow presented made it 

possible to estimate and evaluate the quality and distribution of the reservoirs facies in 

the target zones which are framed between Upper Nia at the top and Copacabana at the 

bottom of the sequence in the study area. 

Thankfully, partially stacked seismic volumes are available, it was possible to 

perform stochastic seismic inversion and use attributes such as (𝐼𝑝) and 𝑉𝑝/𝑉𝑠 to perform 

Bayesian classification in more than one dimension. The combination between 𝐼𝑝 and the 

𝑉𝑝/𝑉𝑠 ratio bring us the benefits to the differentiation between electrofacies related to 

reservoir a non-reservoir. To perform the stochastic elastic seismic inversion, the 

algorithm Ensemble Smoother with Multiple Data Assimilation (ES-MDA) was selected. 

The study is the first work that uses this algorithm for seismic elastic inversion in Ucayali 

Basin.  

In this work, the 50th percentile of the posterior distribution of the stochastic 

elastic inversion was used for the Bayesian classification of reservoir and non-reservoir 

facies. Previously, these electrofacies were defined based on well-log information from 

the three wells available in the study area (Kinteroni field) and upscaled using Backus 

approach at seismic scale. Data from the three wells were also used to construct 

probability density functions of conditional likelihood in the target zone.  

From Bayes' theorem, it was possible to obtain the confusion matrix of facies 

prediction. The first approach for non-reservoir and reservoir facies, the results were 

outstanding, they were justified because target zones are well defined and restricted by 

seismic horizons where units contain more than 90% of specific facies (reservoir and non-

reservoir). In conclusion, seismic inversion also could obtain a reasonably good result in 

the discretization of facies considering reservoir and non-reservoir facies.  According to 

the confusion matrix, reservoir facies get 0.86 of true positive and non-reservoir facies 

obtain 0.8 of true negative. 

The quantitative evaluation of stochastic elastic inversion through the coefficient 

of linear correlation with the upscale well profile showed that there was a gain in quality 
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of results compared to that of deterministic acoustic inversion. In the stochastic seismic 

inversion, the average success rate was 65% against 58% for the deterministic inversion. 

Notorious difference in seismic inversion result was observed in the wells  , such 

as K2 well, in which the correlation coefficient went from 49% in the deterministic 

inversion to 66% in the stochastic inversion. In the three wells stochastic has the 

advantage because it is in the statistical framework and the result is not unique. In 

addition, stochastic inversion is capable of providing quantitative and important 

information to evaluate the potential error. 

The sensitivity of the ES-MDA outputs in relation to the input parameters was 

also evaluated. For instance, these parameters are the number of a prior ensemble 

members and the number of iterations. This was an important analysis, as these 

parameters are directly related to the required computational time for the inversion. 

 The analysis showed that a low number of ensemble members considering 200, 

produces a satisfactory result according to correlation coefficient, but it becomes noisy in 

the seismic section. Regarding the number of iterations (data assimilation), it was 

observed that it has little subtle impact on the difference between the original and modeled 

data on a randomly trace. Therefore, the best reasonable combination found was 300 prior 

ensemble members and 5 number of iterations. 

Overall, seismic inversion results present outstanding information compared to a 

deterministic approach. Offering not only a single optimal solution (deterministic) instead 

of multiple realizations (stochastic) of the subsurface elastic properties. Indeed, these 

results should be integrated into the future geological models allowing greater control on 

the uncertainties in reservoir models because it includes a lateral spatial variability from 

seismic information. Moreover, the second approach of Bayesian facies classification into 

two groups of facies (sandstone and fine sandstone) in the target zones allow to identify 

different characteristics related to the depositional systems where those sediments were 

accumulated. For instance, in the Noi-Ene zone was possible to observe interval of fine-

sandstone facies related to the deposition of damp interdune which could have less quality 

rock properties compared to sandstone facies which are related to climbing dunes and 

sandsheet deposits. On the other hand, Lower Nia presents predominant fine-sandstone 

facies in the middle section related to damp to wet interdune, even a fine horizontal 

interval of fine-sandstone facies could be associated to deflationary super surface, which 
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could be the limit of an aeolian successions. And Finally in the Upper Nia interval 

presents a less horizontal accommodations of the two group of facies due to the 

environment systems where these facies are accumulated, which is interpreted  as a 

distributary fluvial system. 

  



89 

 

8 REFERENCES 

Aki, K., & Richards, P. G. (1980). Quantitative Seismology (1st Edition ed.). W H 

Freeman & Co. 

Alfarraj, M., & Ghassan, A. (2019). Semisupervised sequence modeling for elastic 

impedance inversion. 7(3). 

Avseth, P., Mukerji, T., & Mavko, G. (2005). Quantitative Seismic Interpretation, 

Applying Rock Physics Tools to reduce Interpretation Risk. Cambridge University 

Press. 

Azevedo, L., & Soares, A. (2017). Geostatistical Methods for Reservoir Geophysics. 

Springer. 

Backus, G. E. (1962, October). Long-wave elastic anisotropy produced by horizontal 

layering. Journal of Geophysical Research, Volume 67(Issue 11), Pages 4427-

4440. 

Bahlburg, H., Vervoort, J., Du Frane, S., Bock, B., Augustsson, C., & Reimann, C. 

(2009). Timing of crust formation and recycling in accretionary orogens: Insights 

learned from the western margin of South America. Earth-Science Reviews, Vol. 

97(Issue 1-4), p. 215-241. 

Bosh, M., Mukerji, T., & Ezequiel, F. (2010). Seismic inversion for reservoir properties 

combining statistical rock physics and geostatistics: A review. GEOPHYSICS, 

75(5). 

Bowman, A. W., & Azzalini, A. (1997). Applied Smoothing Techniques for Data 

Analysis. Oxford Statistical Science Series. 

Bristow, C. S., & Moutney, N. P. (2013). Aeolian Stratigraphy. In Treatise on 

Geomorphology.  

Buland, A., & Omre, H. (2003). Bayesian linearized AVO inversion. GEOPHYSICS, 

Volume 68(Issue 1). 

Castagna, J., Al-Jarrah, F., & Chopra, S. (2014). 2. Rock-physics Foundation for AVO 

Analysis. Society of Exploration Geophysicists. 



90 

Colombo, P. M., Giovanini, F. V., Veríssimo, L. W., Bernardes, F. L., Fonseca, P. G., & 

Assine, M. (2019). The sedimentary record of wet and dry eolian systems in the 

Cretaceous of Southeast Brazil: stratigraphic and paleogeographic significance. 

Brazilian Journal of Geology. 

Coward, M. P. (1983). Thrust tectonics, thin skinned or thick skinned, and the 

continuation of thrusts to deep in the crust. Journal of Structural Geology, Volume 

5(Issue 2), Pages 113-123. 

Disalvo, A., Arteaga, M., & Chung, J. (2002). Geometria de las trampas y análisis 

estructural del área de Camisea y sus alrededores, Cuenca Ucayali. INGEPET 

2002. 

Disalvo, A., Chung, J., Seminario, F., Luquez, J., Arteaga, M., Gabulle, J., . . . de Santa 

Anna, M. (2008). Sistemas Petroleros Del “Gran Camisea”. Sur De La Cuenca De 

Ucayali. Peru. VII Congreso de Exploración y Desarrollo de Hidrocarburos 

(Simposio de Sistemas Petroleros de las Cuencas Andinas). 

Doyen, P. M. (2007). Seismic Reservoir Characterization: An Earth Modelling 

Perspective (Vol. 2). EAGE publications. 

Dvorkin, J., Gutierrez, M. A., & Grana, D. (2014). Seismic Reflection of Rock Properties. 

Cambrigde University Press. 

Emerick, A. A., & Reynolds, A. C. (2013, June). Ensemble smoother with multiple data 

assimilation. Computers & Geosciences, Volume 55, Pages 3 -15. 

Espurt, N., Barbarand, J., Roddaz, M., Brusset, S., Baby, P., Saillard, M., & Hermoza, 

W. (2011). A scenario for late Neogene Andean shortening transfer in the Camisea 

Subandean zone (Peru, 12°S) : implications for growth of the Northern Andean 

Plateau. GSA Bulletin, Vol. 123, p. 2050-2068. 

Fernandes, F. D., & Lupinacci, W. (2021). Pseudo-wells generation by spatial-correlated 

stochastic simulations. 1st SEG Latin American Virtual Student Conference 2021. 

Fernandes, F. D., Teixeira, L., Freire , A. M., & Lupinacci, W. M. (2024). Stochastic 

seismic inversion and Bayesian facies classification applied to porosity modeling 

and igneous rock identification. Petroleum Science, ScienceDirect, Vol. 21(Issue 

2), p. 918-935. 



91 

Figueiredo, L., Grana, D., Santos, M., Figueiredo, W., Roisenberg, M., & Schwedersky, 

G. N. (2017). Bayesian seismic inversion based on rock physics prior modeling 

for the joint estimation of acoustic impedance, porosity and lithofacies. 

Computational Physics, Vol 336(Issue 1), 128-142. 

Frank, A., & Kocurek, G. (1996). Toward a model for airflow on the lee side of aeolian 

dunes. Sedimentology, Vol. 43(Issue 3), p. 451-458. 

Gil Rodriguez, W., Baby, P., & Ballard, J.-F. (2001). Structure et contrôle 

paléogéographique de la zone subandine péruvienneStructure and 

palaeogeographic control of the Peruvian Subandean zone. ScienceDirect, Vol. 

333(Issue 11), p. 741-748. 

Golub, G. H., & Van Loan, C. F. (2013). Matrix Computation (Fourth ed.). The Johns 

Hopkins University Press. 

Grana, D. (2016). Bayesian linearized rock-physics inversion. GEOPHYSICS, 81(6). 

Grana, D., & Dvorkin, J. (2011). The link between seismic inversion, rock physics, and 

geostatistical simulations in seismic reservoir characterization studies. The 

Leading Edge, Vol 30(Issue 1). 

Grana, D., Azevedo, L., Figueiredo, L., & Mukerji, T. (2022). Probabilistic inversion of 

seismic data for reservoir petrophysical characterization: Review and examples. 

Geophysics, Vol. 87(Issue 5). 

Grana, D., de Figueiredo, L., & Mosegaard, K. (2023). Markov chain Monte Carlo for 

seismic facies classification. Geophyisics, Vol. 88. 

Grana, D., Mukerji, T., & Philippe, D. (2021). Seismic Reservoir Modeling Theory, 

Examples, and Algorithms. Wiley. 

Grana, D., Mukerji, T., Dvorkin, J., & Mavko, G. (2012). Stochastic inversion of facies 

from seismic data based on sequential simulations and probability perturbation 

method. GEOPHYSICS, 77(4). 

Grosso, S., Gabulle, J., & Chavez, F. (2017). Depósitos Eolicos Pre-cretácicos en los 

yacimientos gasíferos de Camisea, cuenca Ucayali, Perú. XX Congreso Geológico 

Argentino. 



92 

Hermoza, W., Brusset, S., Baby, P., Gil, W., Roddaz, M., Guerrero, N., & Bolaños, R. 

(2005). The Huallaga foreland basin evolution: Thrust propagation in a deltaic 

environment, northern Peruvian Andes. Journal of South American Earth 

Sciences, v. 19(i. 1), p. 21-34. 

Huamán, V. C. (2018). Prediccion de propiedades de las rocas y distribución de fluidos 

en los reservorios upper y lower nia mediante el analisis de fi sca de rocas y 

atributos de inversión sísmica, Lote 57. Boletin de la Sociedad Geologica del 

Perú. 

Kocurek, G., & Havholm, K. G. (1993). Eolian Sequence Stratigraphy—A Conceptual 

Framework. In Recent Developments in Siliciclastic Sequence Stratigraphy.  

Kocurek, G., & Nielson, J. (1986). Conditions favourable for the formation of warm-

climate aeolian sand sheets. Sedimentology, Vol. 33(Issue 6), p. 795-816. 

Leeuwen, P. J., & Evensen, G. (1996). Data Assimilation and Inverse Methods in Terms 

of a Probabilistic Formulation. Monthly Weather Review, Volume 124(Issue 12), 

Pages 2898-2913. 

Liu, M., & Grana, D. (2018). Stochastic nonlinear inversion of seismic data for the 

estimation of petroelastic properties using the ensemble smoother and data 

reparameterization. (SEG, Ed.) Geophysics, Volume 83(Issue 3). 

Liu, M., & Grana, D. (2019). Accelerating geostatistical seismic inversion using 

TensorFlow: A heterogeneous distributed deep learning framework. Computers 

& Geosciences, Vol. 124, p. 37-45. 

Luque, N. G., & Huamán, V. C. (2016). Modelado de Velocidades durante el 

procesamiento sísmico 3D PSDM y su implicancia en la configuración estructural 

del campo Kinteroni-Sagari, Lote 57, Camisea-Perú. Congreso Nacional de 

Geologia. 

McClay, K., Scarselli, N., Tamara, J., Hammerstein, J., & Torres, D. (2018b). Structural 

Styles of the Camisea Fold-and-Thrust Belt, Southeast Peru. In Petroleum Basins 

and Hydrocarbon Potential of the Andes of Peru and Bolivia (pp. p. 271-296). 

AAPG. 

McClay, K., Tamara, J., Hammerstein, J., Mora, A., Zamora, G., & Uzkeda, H. (2018a). 

Sub-Andean Thick and Thin-Skinned Thrust Systems of Southeastern Peru and 



93 

Bolivia—A Review. In Petroleum Basins and Hydrocarbon Potential of the 

Andes od Peru and Bolivia (pp. p. 35-62). AAPG. 

Mosegaard, K., & Vestergaard, P. (1991). A Simulated Annealing Approach to Seismic 

Model Optimization with Sparse Prior Information. Geophysical Prospecting, 

39(5), 599-611. 

Mountney, N. P. (2006). Periodic accumulation and destruction of aeolian erg sequences 

in the Permian Cedar Mesa Sandstone, White Canyon, southern Utah, USA. Utah: 

Sedimentology. 

Mukerji, T., Jørstad, A., Mavko, G., & Granli, J. (1998). Applying statistical rock physics 

and seismic inversions to map lithofacies and pore fluid probabilities in a North 

Sea reservoir. SEG Technical Program Expanded Abstracts. 

Ni, X., Zhang, J., Guangzhi , Z., Wang, B., Lin, Y., & Liu, Z. (2024). Geostatistical 

inversion method based on seismic waveform similarity. Applied Geophysics, Vol. 

20, p. 186-197. 

Ødegaard, E., & Avseth, P. (2004). Well log and seismic data analysis using rock physics 

templates. First Break, EAGE, 22(10). 

Oliveira, L., Pimentel, F., Peiro, M., Amaral, P., & Christovan, J. (2018). A seismic 

reservoir characterization and porosity estimation workflow to support geological 

model update: pre-salt reservoir case study, Brazil. First Break, Vol. 36(Issue 9), 

p. 75-85. 

Peña, D., Arriola, P., Pinto, S., Santos, J., Pérez, A., & Bonora, M. (2018). 

PROVENIENCIA, EDAD Y PALEOGEOGRAFÍA DE LAS ARENAS 

RESERVORIOS - SUR CUENCA UCAYALI (AREA CAMISEA). Congreso 

Peruano de Geología. 

Penna, R., & Lupinacci, W. M. (2020). Decameter-Scale Flow-Unit Classification in 

Brazilian Presalt Carbonates. SPE Reservoir Evaluation & Engineering, Vol. 23, 

p. 1420-1439. 

Penna, R., Araújo, S., Geisslinger, A., Sansonowski, R., Oliveira, L., Rosseto, J., & 

Matos, M. (2019). Carbonate and igneous rock characterization through 

reprocessing, FWI imaging, and elastic inversion of a legacy seismic data set in 

Brazilian presalt province. The Leading Edge, Vol. 38(Issue 1). 



94 

Ribes, C., Kergaravat, C., Bonnel, C., Crumeyrolle, P., Callot, J.-P., Poisson, A., . . . 

Ringenbach, J.-C. (2015). Fluvial sedimentation in a salt-controlled mini-basin: 

stratal patterns and facies assemblages, Sivas Basin, Turkey. Sedimentology, p. 

1513-1545. 

Rojas, C. G. (2013). Caracterización diagenética de las areniscas reservorios del miembro 

informal Lower Nia, sur de la cuenca del Ucayali, Perú. Boletín de la Sociedad 

Geológica del Perú, p. 36-39. 

Rojas, C. G., Vásquez, M. F., & Chacón, R. S. (2013). Caracterización sedimentológica 

del miembro informal Upper Noi, sur de la cuenca del Ucayali, Perú. Boletín de 

la Sociedad Geológica del Perú, p. 40-43. 

Rusell, B. H. (1998). Introduction to Seismic Inversion Methods. Society of Exploration 

Geophysicists. 

Scales, J., & Tenorio, L. (2001). Prior information and uncertainty in inverse problems. 

GEOPHYSICS, 66(2). 

Scott, D. W. (2014). Kernel density estimation. Wiley Online Library, 1-7. 

Seminario, F., Luquez, J., & Blanco, S. (2005). Las rocas reservorio productivas del Gran 

Camisea, Cuenca Ucayali-Perú. INGEPET. 

Sen, M. K., & Stoffa, P. L. (2013). Global Optimization Methods in Geophysical 

Inversion. Cambridge University Press. 

Silverman, B. W. (1986). Density estimation for statistics and data analysis. CRC press, 

26. 

Simm, R., & Bacon, M. (2014). Seismic AMplitude, An Interpreter's Handbook. 

Cambrigde University Press. 

Simon, P. (1993a). Geology, hydrocarbon potential and prospect analysis, Ucayali basin, 

Perú. v. 1, p. 246. 

Soares, A., & Azevedo, L. (2018). Geostatistics for Seismic Characterization of Oil 

Reservoirs. In Handbook of Mathematical Geosciences (pp. Pages 483-504). 

Suppe, J. (1983). Geometry and kinematics of fault-bent folding. American Journal of 

Sciences, 283, 684-721. 



95 

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter 

Estimation. SIAM. 

Texeira, L., Cruz, N., Silvany, P., & Fonseca, J. (2017). Quantitative seismic 

interpretation integrated with well-test analysis in turbidite and presalt reservoirs. 

The Leading Edge, Vol. 36(Issue 11), p. 874-960. 

Tompkins, J. M., Fernandez, J., Alumbaugh, D., & Mukerji, T. (2011). Scalable 

uncertainty estimation for nonlinear inverse problems using parameter reduction, 

constraint mapping, and geometric sampling: Marine controlled-source 

electromagnetic examples. GEOPHYSICS, 76(4), 263-281. 

Torres, D., & MaClay, K. (2014). Structural evolution of the gas-condesate bearing traps 

of Camisea, Se Peru. INGEPET. 

Venturo, D., & Huamán, V. (2013). Estilos estructurales que controlan los reservorios del 

Lote 57 dentro del área del Gran Camisea. Boletín de la Sociedad Geológica del 

Perú, p. 60-64. 

Vernik, L. (2016). Seismic Petrophysics in Quatitative Interpretation. Society of 

Exploration Geophysicists. 

Zamora, G., Louterbach, M., & Arriola, P. (2019). Structural controls along the Peruvian 

Subandes. In Petroleum Basins anf Hydrocarbon Potential onf the Andes of Peru 

and Bolivia (pp. p. 333-362). AAPG. 

 

 


