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Abstract 

Petroleum companies have invested heavily in the exploration of new frontier offshore 

basins in Brazil. Uncertainties associated with geological complexity, lithostratigraphy, fluid 

content, and seismic resolution in these basins are the most faced challenges. Many methods 

have been used to circumvent these issues, such as assessing seismic attributes, seismic 

inversion, spectral decomposition, and the integration of these methodologies to accomplish an 

optimal approach. Due to the complex geology of these areas, it is very difficult to identify 

potential reservoirs along one specific geological formation. Hence, applying spectral 

decomposition to new frontier basins of high geological complexity can help the overcoming 

of these challenges since, in the frequency domain, it is possible to better define variability and 

lateral geologic discontinuities. However, without the support of other geophysical methods, 

this approach may increase rather than reduce uncertainties. The correct choice of the spectral 

decomposition optimization approach is crucial to guarantee that the target zone is accurately 

represented and is as crucial as selecting the appropriate transform. Here, with the objective to 

reduce risk in exploration and development phase, we present two methodologies which 

integrates different types of seismic attributes as well as elastic inversion, spectral 

decomposition and geometrical attributes and seismic facies classification in Brazilian 

siliciclastic and carbonate environment. First methodology applied in Brazilian equatorial 

margin basin, the result shows the new appraisal well had been planned at a good location, but 

that its facies were not as good as those of the first discovery well (fact confirmed after drilling). 

The second methodology applied in brazilian pre sal carbonate, shows that the multi-attribute 

analysis and facies classification to generate a geologically significant outcome and to guide a 

final geobody extraction that is calibrated by well data and that can be used as a spatial indicator 

of the distribution of good reservoir quality for static modeling. 

Keywords: spectral decomposition, new frontier basins, seismic facies, Brazilian equatorial 

margin basin. 
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Resumo 

As empresas de petróleo têm investido fortemente na exploração de bacias offshore de 

novas fronteiras no Brasil. Incertezas associadas à complexidade geológica, litoestratigrafia, 

presença de fluidos e resolução sísmica nessas bacias são os desafios mais enfrentados. Muitos 

métodos têm sido utilizados para contornar essas questões, tais como a avaliação de atributos 

sísmicos, inversão sísmica, decomposição espectral e a integração dessas metodologias para 

obter uma melhor abordagem. Devido à complexa geologia dessas áreas, é muito difícil 

identificar potenciais reservatórios de hidrocarbonatos ao longo de uma formação geológica 

específica. Assim, a aplicação da decomposição espectral as bacias de novas fronteiras de alta 

complexidade geológica podem auxiliar na superação desses desafios, pois no domínio da 

frequência, é possível melhor definir variabilidade e descontinuidades geológicas laterais. No 

entanto, sem o apoio de outros métodos geofísicos, esta abordagem pode aumentar as incertezas 

em vez de reduzí-las. Por isso, a escolha correta da abordagem de otimização da decomposição 

espectral é crucial para garantir que a zona alvo seja representada com precisão e é tão crucial 

quanto escolher a transformada apropriada para decompor o dado sísmico. Aqui, com o objetivo 

de reduzir o risco na fase de exploração e desenvolvimento, apresentamos duas metodologias 

que integra diferentes tipos de atributos sísmicos, como os atributos resultantes da inversão 

elástica e da decomposição espectral e atributos geométricos e a classificação de fáceis sísmicas 

em ambientes siliciclásticos e carbonáticos do pré-sal brasileiro. Na primeira metodologia, 

aplicada numa bacia da margem equatorial brasileira, os resultados mostraram que o novo poço 

de avaliação foi planejado em uma boa localização, mas que suas fácies não eram tão boas 

quanto as do primeiro poço descoberto (fato confirmado após a perfuração). Na segunda 

metodologia, aplicada nos carbonatos do pré-sal brasileiro, a análise multi-attributo e a 

classificação de fácies sísmica contribuíram para gerar um resultado geologicamente 

significativo e guiar uma extração de um geobody, calibrada por dados de poços e que pode ser 

usada como um indicador espacial da distribuição de boa qualidade de reservatório para 

modelagem estática. 

Palavras-chave: Decomposição espectral, bacias de novas fronteiras, sismofácies, bacias de 

margem equatorial brasileira.  
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1.  Presentation 

This dissertation was developed based on the results from two works: Risk 

evaluate on new frontier basin of brazilian equatorial margin and characterization of 

brazilian pre-salt carbonate reservoir. In order to develop these two works, I used two 

different methodologies of combining seismic attributes as well as spectral 

decomposition, seismic inversion, geometrical attributes and seismic facies classification. 

These dissertation is presented in the form of two scientific articles, which will be 

submitted to recognized journals: THE AMERICAN ASSOCIATION OF 

PETROLEUM GEOLOGISTS JOURNAL (AAPG), with title: An Approach to 

Reduce Exploration Risk using Spectral Decomposition, Pre-stack Inversion and 

Seismic Facies Classification and THE SOCIETY OF EXPLORATION 

GEOPHYSICIST JOURNAL INTERPRETATION (Interpretation), with title: 

MultiAttribute Framework Analysis for the Identification of Carbonate Mounds in 

The Brazilian Presalt Zone after all reviews requested by the evaluators are met. 

1.1.  Dissertation structure 

The stages carried out for the development of the dissertation were organized in a 

total of eight chapters, being: presentation and conclusion, first and the last chapter 

respectively, will be unique for both articles and introduction, methodology, results and 

discussions separately for each one. 

The second chapter presents the main challanges that motivated the proposed 

work. In the third chapter is addressed the application of the methodology in the seismic 

data of brazilian equatorial margin basin with siliciclastic reservoir. 

The fourth chapter discusses the results and discussions for the first article. In the 

fifth chapter we present the introduction of the second article, which will show the 

challenges faced and the proposals to solve them. 

In the sixth chapter is presented the methodology applied in the environments of 

carbonate reservoirs of the Brazilian pre-salt, followed by the seventh chapter that 

contains the results and discussions. Finally, the last chapter presents the conclusions 

obtained through the critical analysis of the results of both articles. 

  



 

5 
 

2.  Introduction: Siliciclastic Environment  

Spectral decomposition transforms temporal signals into energy density maps. 

There are many methods available to express the energy of the signal as a function of 

frequency and amplitude. Each method has its advantages and disadvantages, and 

different applications require different transforms and specific optimization (Castagna 

and Sun, 2006). Spectral decomposition has been successfully applied in seismic 

exploration for stratigraphic mapping (Partyka et al., 1999; Marfurt and Kirlin, 2001; 

Puryear and Castagna, 2008), reservoir detection (Castagna et al., 2003; Sinha et al., 

2005) and attenuation estimation and correction (Lupinacci and Oliveira, 2015), therefore  

helping to decrease uncertainties encountered during the exploration and production 

phases and assisting the identification of the best regions for drilling new wells (Jesus et 

al., 2019). 

In order to define the best spectral decomposition approach to be used, the 

application, quality of seismic illumination, frequency range, signal-to-noise ratio and 

geologic complexity must be taken into account. A good practice is to conduct a 

feasibility study to establish the most appropriate spectral decomposition method 

depending of the purpose of its use. In addition, horizon mapping of an extensive seismic 

survey may result in many errors due to auto-picking, with complex geology limiting the 

use of horizon slices for spectral decomposition optimization because they cannot 

represent a geologic timeline. Integration of different seismic attributes, such as 

compressional (P)- and shear (S)-impedances, compressional velocity and shear velocity 

(Vp/Vs) ratio, can help overcome these problems.  

Pre-stack seismic inversion has been applied as a tool for the quantitative seismic 

interpretation, helping to characterize reservoirs (see, for example, Avseth et al., 2005; 

Zhao et al., 2017). The elastic parameters (P- and S-impedances, and Vp/Vs ratio) 

obtained from seismic inversion are correlated with rock physical models, providing 

information about lithology, fluid content, and porosity (Spikes et al., 2007; Simm and 

Bacon, 2014). From the seismic inversion and rock physics modelling, static models of 

reservoir properties are built and thus can assist in reserves estimation (Vernik et al., 

2002), location of production and injection wells and can be used as input for flow 

simulations in dynamic models (Bredesen et al., 2015; Ferreira and Lupinacci, 2018).  
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Dominant frequency and maximum negative amplitude are other useful seismic 

attributes that can contribute to optimization of spectral decomposition. When aiming to 

analyze the dominant frequency in a target zone interval, it is very important to establish 

which frequencies best represent the potential reservoir. In addition, the maximum 

negative amplitude between the top and base of the reservoir should be analyzed to assist 

in the determination of best areas for production because its response is mostly connected 

to hydrocarbon anomalies or good quality reservoirs (Jesus et al., 2019). 

Finally, seismic facies classification through unsupervised neural network 

methods is a very powerful tool for reservoir characterization because it allows fast data 

analysis through the identification of linear or non-linear correlations amongst the input 

seismic attribute volumes and generates facies expected for the area helping to identify 

the best reservoir facies when associated to well information (Deboeck and Kohonen, 

1998; Du and Swamy, 2014; Shanmuganathan, 2016; Ferreira et al., 2019). 
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3.  Methodology: Article 1 

3.1.  Seismic data acquisition and processing 

The acquisition parameters are shown in Table 1. A 6 km (~3.73 mi) streamer 

length in an environment with huge submarine canyons and cliffs with bathymetric 

variation of up to 400 m (~1312.3 ft) (Figure 1). Such an acquisition survey might 

compromise the rays, resulting in target zone poor illumination. Poor illumination was 

also observed at the greatest depths because of natural energy absorption and a low 

contribution from the far offset data due to the short cable length. 

Table 1: Acquisition parameters. 
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Figure 1: Submarine canyons showing the complex bathymetry of the study area, which impact the 

seismic imaging of the reservoir zone. 

In order to obtain better images from the subsurface, the seismic data was 

processed using a specific workflow. The complete flowchart is presented in Figure 2. 

The complete seismic processing history is not described here. However, two main steps 

that were used to achieve considerable analytical improvements are highlighted: water 

column statics (WCS) correction and velocity model building (VMB). The WCS 

correction was applied to compensate for velocity changes in the water column caused by 

salinity, temperature and density. As for VBM, the initial step applied was a tomographic 

model. Then, a tilted transversal isotropic (TTI) model was obtained from the 

tomographic approach, along with three seismic and well data inversions (Bakulin et al., 

2010). In order to decrease the well-to-seismic misties, the anisotropy models were 

updated based on well markers.  

An important strategy was adopted in the data processing to prevent the velocity 

model from following seafloor variation or creating “bull eyes” in the final model, which 

consisted of building the velocity model starting with the low frequencies and to refining 

it by adding the higher frequencies in each round of tomography. Occasionally, the 

tomographic signal was lost, converging to a local minimum due to poor illumination 

associated with the highly complex seafloor topography.   

The initial step of VMB, we applied a tomographic model. Then, a tilted 

transversal isotropic (TTI) model was obtained from the tomographic approach, along 
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with three seismic and well data inversions (Bakulin et al., 2010). In order to decrease the 

well-to-seismic mistie, we updated the anisotropy models based on the well markers.  

 

Figure 2: Seismic processing workflow applied for improved seismic imaging. 

Seismic data usually contain random and coherent noise. This noise may be due 

to acquisition design, preprocessing, and migration (Chopra and Marfurt, 2007). 

Nevertheless, some of those problems can be mitigated through post-stack processing 

before generating seismic attributes. 

The seismic migration data was preconditioned through two stages, each having 

different objectives. First, a structurally-oriented filtering was applied to improve the 

signal/noise ratio, which can make the seismic reflector more continuous, and better 

define faults. Then, spectral enhancement was used to improve vertical resolution (Zhou 

et al., 2014). As shown in Figure 3, these steps preserved the original dominant frequency 

and accentuated the pre-existing frequencies, thereby increasing bandwidth and 

improving the vertical resolution. 
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Figure 3: (a) Original seismic section. (b) Seismic section after application of the structurally-oriented 

filtering. (c) Seismic section after application of the spectral enhancement. It is possible to notice the 

increase of the seismic resolution after preconditioning and better definition of layers as shown in the red 

boxes. 

3.2.  Seismic data preconditioning 

Seismic data usually contain random and coherent noise. This noise may be due 

to acquisition design, preprocessing, and migration (Chopra and Marfurt, 2007). 

Nevertheless, some of those problems can be mitigated through post-stack processing 

before generating seismic attributes. 

The seismic migration data was preconditioned through two stages, each one 

having different objectives. We first applied structurally-oriented filtering to improve the 

signal/noise ratio, which can make the seismic reflector more continuous, and better 
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define faults. Then, we applied spectral enhancement to improve vertical resolution (Zhou 

et al., 2014). As shown in Figure 3, these steps preserved the original dominant frequency 

and accentuated the pre-existing frequencies, thereby increasing bandwidth and 

improving the vertical resolution. 

 

Figure 3: (a) Original seismic data used as input. (b) Result of structurally-oriented 

filtering. (c) Spectral enhancement. 
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3.3.  Pre-stack inversion  

Information obtained from pre-stack inversion may facilitate the identification of 

facies within the target zone. The use of elastic attributes to optimize spectral 

decomposition can increase the reliability for identification of lithology and fluid type 

(Jesus and Takayama, 2016). In this study, pre-stack inversion was used to discriminate 

sands from shales, and spectral decomposition was performed only considering the 

dominant frequency value corresponding to the sand zones. 

When elastic attributes, such as compressional (Vp) and shear (Vs) velocities, 

acoustic impedance (Ip) and density are known, predictions of petrophysical parameters, 

characterization of rock heterogeneity and complexity, as well as their uncertainty 

associated with theoretical modeling, are the main objectives of rock physics inversion 

(Grana and Della Rossa, 2010). A combination of rock physics inversion and seismic 

inversion facilitates estimation of petrophysical properties (Grana, 2016) and, when 

petrophysical properties and their uncertainties can be estimated, it is possible to assess 

the probable facies occurrence (Xu et al., 2016). 

Seismic inversion attributes (Ip and Vp/Vs) and lithological information from the 

wells were used to obtain facies and fluid probabilities (FFP) through Bayesian inference 

(Pendrel et al., 2017; Schwedersky et al., 2017). The FFP helped in the uncertainty 

analysis for reservoir evaluation. Three volumes resulting from FFP analysis based on the 

construction of probability density functions (PDF) on an Ip and Vp/Vs crossplot were 

generated: good-quality sandstone reservoir, poor-quality sandstone reservoir, shale, and 

some unidentified facies. 

3.4. Spectral decomposition 

Conventional spectral decomposition methodologies consider horizon slices or 

time slices to optimize their results. However, geologic complexity inhibits the accuracy 

of these conventional approaches. Focusing solely on the reservoir area, elastic inversion 

attributes were used to optimize spectral decomposition and to increase the reliability of 

results, assisting in the interpretations (Veeken and Da Silva, 2004). Then, a sensitivity 

study was performed using the top and the base of the interpreted horizons from the elastic 

inversion result, as well as the seismic volume following structurally-oriented filtering 

and spectral enhancement, to calculate the maximum negative amplitude and dominant 
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frequency. With the maximum negative amplitude and dominant frequency attributes 

(Figure 4), both the discovery well and the first appraisal well locations were evaluated. 

Based on the maximum negative amplitude map, both wells are in a strong negative 

amplitude zone, but the signal is weaker for the appraisal well. 

 

Figure 4: (a) Maximum negative amplitude and; (b) Dominant frequency (Hz) extracted between the top 

and base of the reservoir. The wells are represented by stars. 

Spectral decomposition basically decomposes the seismic data into different 

frequency bands, as illustrated in Figure 5. The seismic data in the time domain was used 

for spectral decomposition as the algorithm assesses spectral components in the time-

frequency domain (measured in cycles/s or Hz). However, the results are later converted 

to the depth domain using the existing VMB for enhanced accuracy and to have more 

control over tuning effects. 
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Figure 5: Short-time Window Fourier Transform (SWFT) applied to seismic data, decomposing it into 

frequency bands, and then envelope attributes were calculated for each frequency band. 

Based on the analysis of dominant frequency, the reservoir exhibits mainly a low 

frequency of 10 Hz. Also, the base of the reservoir has a strong negative amplitude and 

most important frequencies in the reservoir were identified through a sensitivity study 

that indicated frequency bands of 10 Hz, 20 Hz and 30 Hz which were used for analysis. 

Then, the envelope attribute for each of selected frequency bands was calculated (Figure 

6) and contained amplitude information for each specific range. 

Spectral decomposition using short time window Fourier transform (SWFT) was 

applied to the seismic volume following preconditioning and spectral enhancement. 

SWFT spectral decomposition uses a time window, which influences the frequency, as 

well as temporal and spatial resolutions. Narrower windows provide good vertical 

resolution but generate low frequency resolution (Addison, 2002). The main objective of 

using SWFT is to obtain high frequency resolution to better understand the spatial 

distribution of seismic facies, while balancing this with an acceptable vertical resolution. 

Therefore, SWFT was applied with a time window of 30ms based on seismic data from 

well logs and markers. According to Chopra and Marfurt (2014), the window width 

should be carefully chosen because analysis of windows that are smaller than the period 

of interest can create Gibbs artifacts. 
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Figure 6: Envelope attributes: (a) red for low frequency (10 Hz), (b) green for mid frequency (20 Hz) and, 

(c) blue for high frequency (30 Hz), showing how the RGB blend (d) was created. 

3.5.  Seismic facies classification 

An unsupervised neural network was used for seismic facies classification based 

on self-organizing maps method defined by Kohonen (1990; 2013). The application of 

this method is based entirely on the characteristics of seismic data and the resulting facies 

are indicative of reservoir heterogeneity (Jesus et al., 2019).  

The combination of different seismic attributes increases analytical complexity 

for seismic facies classification. Principal Component Analysis (PCA) can be used to 

assess a large set of seismic attributes (Chopra and Marfurt, 2014) and also helps to reveal 

the most significant seismic attributes (Roden et al., 2015), thereby minimizing 

redundancy. To perform a PCA, the spectral decomposition, coherence, acoustic 

impedance and dominant frequency attributes were selected in order to reveal distribution 

patterns in the reservoir. Coherence is a measure of similarity between waveforms or 

traces (Chopra and Marfurt, 2007). This geometrical attribute is helpful to identify faults 

and fractures, which are important features at the margins of a basin. In addition, acoustic 

impedance can be an excellent tool to estimate the petrophysical parameters of a reservoir 
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(Sancevero et al., 2006) and low-frequency seismic anomalies may be associated with 

reservoirs (Castagna et al., 2003). The first three resulting principal component vectors 

were used as input for seismic facies classification. As for the unsupervised neural 

network parametrization, five was the number of classes selected for data discrimination 

in 60 iterations. 
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4.  Results and Discussions: Article 1 

The acoustic impedance and Vp/Vs ratio obtained from pre-stack inversion are 

shown in Figure 7a and 7b, respectively. Using the acoustic impedance, Vp/Vs ratio and 

clay volume discovery well logs crossplot (Figure 8a) it was possible to identify the 

sandstones that may contain oil (termed “good-quality sandstones”) identifiable by 

intermediate acoustic impedance and low Vp/Vs ratio values. Shales were characterized 

by low acoustic impedance and high Vp/Vs ratio values. The sandstones with lower 

probability of oil (termed “poor-quality sandstones”) were classified as the rest of the 

points in the crossplot with high acoustic impedance values and intermediate Vp/Vs ratio 

values. The regions of good-quality sandstones and shales, using the limits established by 

the crossplot analysis, in the acoustic impedance volume are highlighted in Figure 8b and 

8c, respectively. As can be seen in Figure 8b, both wells are good-quality sandstone 

locations. The seismic inversion attributes aided in top and bottom mapping and also in 

optimizing the spectral decomposition and limiting propagation of uncertainty in 

subsequent steps. 

Figure 9a, 9b and 9c show probabilities of each facies in a section and Figure 9d 

shows the most probable facies, revealing three different facies identified as shales 

(brown color) at the top of the section, immediately below the good-quality sandstones 

(green color), and the poor-quality sandstones (yellow color) at the bottom of the section. 

It is important to highlight that the actual facies of the discovery well show good 

correlation with the estimated facies.  

As for the spectral decomposition results, envelope attributes were calculated for 

each one of the selected frequencies and created an RGB blend: red for low frequency 

(10Hz), green for intermediate frequency (20Hz), and blue for high frequency (30Hz). 

The spectral decomposition RGB blend were compared in time and depth domains as a 

quality control to verify if both results were consistent (Figure 10). 
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Figure 7: Section view of an arbitrary line crossing discovery and appraisal wells of (a) acoustic 

impedance values and (b) Vp/Vs ratio values. 
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Figure 8: (a) Cross plot between the acoustic impedance and Vp/Vs ratio discovery well logs colored by 

the clay volume log with polygons highlighting the good-quality sandstones and shales, (b) section view 

of an arbitrary line in the seismic impedance volume which the good-quality sandstones are highlighted 

according to the cross plot and (c) section view of an arbitrary line in the seismic impedance volume 

which the shales are highlighted according to the cross plot. 
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Figure 9: Sections with: (a) probabilities of good-quality sandstones, (b) probabilities of shales, (c) 

probabilities of poor-quality sandstones and (d) most probable facies compared with the facies log from 

the discovery well. Two-way traveltime (TWT). 
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Figure 10: Quality control comparison of spectral decomposition RGB blends in the depth (a) and time 

(b) domains from a horizon slice. 

These spectral decomposition RGB blends are a mix of three attributes, the 

differences in frequencies and magnitude of which are associated with primary colors. 

Color variation represents frequency changes, whereas brightness represents changes in 

amplitude (strong brightness can mean strong positive or negative amplitudes). 

The spectral decomposition RGB blends revealed that the profile at the discovery 

well is quite different from the appraisal well location. According to elastic inversion 

interpretations, the appraisal well would be a good place to find good-quality sandstones 

because it has the same characteristics as the discovery well location, but the spectral 

decomposition RGB blends suggest otherwise because they indicate differences between 

the two well locations (Figure 11a). The region at the discovery well is brighter and has 

a purple color, resulting from a mixture of 10 and 30 Hz frequencies, interpreted to be 

indicative of cleaner sandstones (Figure 11b). As for the region at the appraisal well more 

opaque green color can be seen, resulting from dominance of the 20 Hz frequency, which 

could indicate shalier sandstone facies in the appraisal well (Figure 11c). Therefore, the 

results from spectral decomposition analysis indicate that the appraisal well location had 

a high probability for finding non-reservoir facies. The seismic facies classification 

results can be observed in an arbitrary line through the two wells in Figure 12 and 

compared to well data in Figure 13a and 13b.  Porosity and gamma ray logs were used to 

qualitatively interpret each class, and since the higher porosity and lower gamma ray 
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(related to shale content) values indicate the best reservoirs classes, the analyzed interval 

was discriminated into: very good reservoir for class 1 (green), good for class 2 (yellow), 

moderate for class 3 (purple), poor for class 4 (light blue), and very poor for class 5 (red). 

 

Figure 11: Enhanced view of the spectral decomposition RGB blend for (a) both the discovery and 

appraisal wells in the study area, (b) zooming in the discovery well (c) zooming in appraisal well. 
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Figure 12: Section view of an arbitrary line crossing the discovery and appraisal wells of seismic facies 

classification results. 

 

Figure 13: Gamma ray and total porosity logs versus seismic facies classification at the discovery well (a) 

and at the appraisal well (b) locations. 
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Predictions about the appraisal well in the seismic facies classification process 

were performed using only information from the discovery well. The discovery well is in 

a better location than the proposed appraisal well, because the upper layer in the appraisal 

well is categorized as class 5 meaning very poor quality compared to the discovery well. 

These results are consistent with the spectral decomposition results. 

After drilling the appraisal well, its porosity and gamma ray logs (Figure 13b) 

were also compared to the seismic facies classification results. This comparison 

confirmed that the seismic classification and spectral decomposition analysis were 

accurate because well log information from the appraisal well revealed the upper part of 

the well to be shalier hence possessing poorer quality reservoirs compared to the 

discovery well. 
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5.  Introduction: Carbonate Environment  

Brazil has been producing oil from pre-salt carbonate reservoirs over the past 

decade. Recently, these reservoirs attained an incredible output of just over 1.7 million 

barrels of oil equivalent per day (boepd), representing more than half of the country's 

daily production and demonstrating the importance of these carbonate reservoirs to 

Brazil. However, it is tremendously challenging to map and characterize these carbonate 

reservoirs given their considerable spatial heterogeneity, complex pore systems and often 

ambiguous seismic responses. 

Burgess et al. (2013) defined criteria for discriminating different carbonate 

features in a seismic image that involve: regional constraints, analysis of basic seismic 

geometries, and analyses of geophysical details and finer-scale seismic geometries. For 

the purpose of this work, we adopted analyses of seismic geometries and geophysical 

details, as well as amplitude anomalies and the behavior of frequencies in the reservoir 

interval, together with the high density of faults and fractures, to define carbonate 

features, many of which were assessed at a sub-seismic scale (Wright and Rodriguez, 

2018).  

Here, we propose a workflow for identifying and characterizing carbonate mounds 

in the Brazilian pre-salt zone using a combination of hybrid spectral decomposition 

(HSD) together with geometrical attributes and curvature and coherence attributes. For 

this work, we use the term “carbonate mounds” to describe almost conical carbonate 

bodies of pronounced relief that are often difficult to map seismically due to their 

ambiguous limits and internal low amplitude reflectors, but that exhibit excellent 

reservoir quality both in terms of matrix and associated fracturing and that have been 

successfully drilled, evaluated and tested. It is beyond the scope of this work to interpret 

these features further or to establish their depositional environment.  For a broader 

perception of the many interpretations of these pre-salt carbonates we suggest, amongst 

others, the works of Arienti et al. (2018) on Barra Velha Formation depositional systems, 

Buckley et al. (2015) on early Cretaceous lacustrine carbonate platforms, Wright and 

Barnet (2017) on depositional models for the pre-salt Barra Velha Formation, and Wright 

and Rodriguez (2018) on depositional interpretations of pre-salt environments and their 

links to seismic facies. Our workflow is focused on characterizing seismic facies and their 

relationship to present-day reservoir quality, which we believe can be applied and 
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adjusted to different settings within the Brazilian pre-salt sequence. Our intent is to detail 

a workflow that can facilitate mapping of present-day good reservoir quality carbonate 

mound geometries to enable their characterization from a seismic perspective and to allow 

assessment of their spatial distribution for the purposes of reservoir modeling during 

exploration and appraisal stages. 

Seismic attenuation can greatly affect the quality of seismic signals perpetuated at 

considerable depths (Lupinacci and Oliveira, 2015; Yuan et al., 2017). Consequently, 

mapping carbonate mounds in the Brazilian pre-salt fields, which lie at depths ranging 

between 5,000 m and 6,000 m and below an approximately 2,000 m thick layer of salt, is 

a major challenge for geoscientists because of low seismic illumination and low 

amplitude anomalies, low impedance, and the high fault and fracture density that are 

characteristic of these geological features. It is difficult to identify and delineate such 

features in these pre-salt fields using only seismic data because of the complexity of the 

seismic image generated and the absence of impedance contrast between the reservoir and 

adjacent sealing facies (Zheng et al., 2007). 

Despite many criteria for presalt seismic data having already been defined, we 

consider in this study a general information about the acquisition and processing of such 

data is essential to understanding its ambiguities and limitations its carries. Furthermore, 

since seismic data can be contaminated by random and coherent noise arising from data 

acquisition or complex geology that can bias results even after data processing and 

migration (Chopra and Marfurt, 2007), data preconditioning is crucial to obtain good 

results (Lupinacci et al., 2017). 

With respect to carbonate reservoir characterization, seismic facies analysis is 

increasingly seen as an effective way of estimating reservoir properties (Matos et al., 

2007), combining different seismic attributes through pattern recognition algorithms such 

as seismic multi-attributes analysis (Rongchang et al., 2017) to identify, for example, 

lateral changes in a reservoir. Seismic attributes are important tools for reservoir 

characterization that can help to visually enhance or quantify features of interest (Chopra 

and Marfurt, 2007). However, selection of seismic attributes for analysis should be made 

with caution so as not to propagate false interpretations.  

Curvature and coherence attributes can be used together in seismic multi-attributes 

analyses to increase the reliability of this type of geological analysis. The curvature 

attribute describes how bent a curve is at a point along its length (Roberts, 2001), focusing 
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on changes in shape. This attribute is a good predictor of faults, as well as anticline and 

syncline structures (Klein et al., 2008), as it is not affected by variation in amplitude 

related to changes in lithology and fluid. The coherence cube attribute - a measure of the 

similarity between neighboring seismic traces in three dimensions - has been used since 

1995 (Bahorich and Farmer, 1995) as a powerful seismic interpretation tool for imaging 

geological discontinuities such as faults and fractures, which are recurrently associated 

with carbonate mound features in this study area. However, many ways of calculating 

coherence can be implemented. Here, we applied the eigenvalue-coherence algorithm 

(Gersztenkorn and Marfurt et al., 1999), which uses several adjacent traces within a local 

window to estimate discontinuity for each sample. 

Spectral decomposition is another widely used attribute for identifying seismic 

patterns. It can represent the seismic trace in a frequency domain or in sub-bands of 

frequencies. It can be used to identify subtle thickness variations and discontinuities, as 

well as to predict bedding thicknesses (e.g. Partyka et al., 1999). Spectral decomposition 

can also be used to identify low-frequency shadow, which may indicate the presence of 

hydrocarbons (Sun et al., 2002; Wang, 2007) or as in this study, to identify good quality 

reservoirs upon calibration by the well log porosity response. 

Additionally, a frequency bandwidth related to seismic facies can be selected from 

a spectral decomposition analysis, so a specific amplitude range can be isolated that 

represents a reservoir anomaly (termed hybrid spectral decomposition, HSD) (Jesus et al., 

2017).  

Pattern recognition and classification of seismic features is fundamental to seismic 

data interpretation (Zhao et al., 2015), so uniting different criteria through several seismic 

attributes and establishing seismic facies classes is an excellent approach for isolating 

reservoirs of good quality in pre-salt carbonate mounds from shale or tight zones (non-

reservoir). 

We propose a workflow for identifying and characterizing carbonate mounds in 

the Brazilian pre-salt zone using a combination of HSD with curvature and coherence 

geometric attributes. We chose those attributes because of their ability to provide useful 

geological information and used them to generate a seismic facies classification to 

specifically identify good quality reservoirs in carbonate mounds. The extracted geobody 

was then used as a spatial indicator of the distribution of porosity in the reservoir. 
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6.  Methodology: Article 2 

As described in Burgess et al. (2013), there is no clear set of diagnostic criteria for 

identifying many specific carbonate features, especially in frontier regions. From a 

geophysical perspective, the Brazilian pre-salt zone is still a frontier area, and given the 

influence of salt thickness on image quality of seismic data, seismic acquisition and 

processing details need to be carefully understood prior to performing any proposed 

methodology for seismic data interpretation. 

Our workflow starts with preconditioning of the seismic data (Figure 14) using 

structural-oriented filtering (SOF) to remove some background noise and preserve fault 

edges. The SOF volume is then used to generate the curvature attribute. In parallel and to 

improve overall vertical resolution, an image enhancement is applied to the SOF volume 

to calculate a coherence cube, which facilitates better identification of the faulted and 

fractured character of these pre-salt carbonate mounds.  

 

Figure 14: Steps used to calculate the seismic attributes. 

We also apply HSD to the SOF volume to identify low amplitude zones, which 

correspond to areas of good porosity. All these seismic attributes are then combined to 

classify the seismic facies, which allow us to distinguish the most important facies 
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representing good reservoir quality carbonate mounds, and to extract a geobody that can 

then be used as a spatial control for porosity distribution in reservoir modeling. 

Our methodology for characterizing carbonate mounds is thus divided into four 

stages: 1) seismic data acquisition and processing overview; 2) preconditioning of seismic 

data; 3) calculation of seismic attributes; and 4) classification of seismic facies. We 

describe these processing stages in detail in the following sections. 

6.1. Seismic data acquisition and processing overview 

The seismic acquisition was performed in 2013 from a single vessel equipped with 

12 streamers, 8,000 m in length, and dual sources. The seismic data was recorded with an 

azimuth direction of 123º, a sampling rate of 2 ms, and a nominal fold of 80. Seismic 

acquisition parameters are presented in Table 2. 

Table 2: Acquisition parameters from a single vessel. 

 

Depth imaging and velocity model building in deep-water environments with 

complex and large evaporated layers is challenging for seismic illumination. These 

seismic acquisition parameters are not ideal for seismic illumination of pre-salt reservoirs. 
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Had the seismic data been acquired as broadband, we could have applied a more efficient 

seismic processing. 

The initial velocity model building (VMB) was rendered on legacy data to obtain 

a more realistic and geologically relevant outcome by first applying an isotropic model 

for the initial step and then deriving a tilted transversal isotropic (TTI) model from the 

tomographic data along with the seismic inversion (Bakulin et al., 2010). To decrease the 

well-to-seismic mistie, we updated the anisotropy models based on the well markers. 

Another important strategy we adopted for the VMB was to divide the salt layer using 

intermediate horizons that separated stratified salt from homogeneous salt. The 

background starting salt velocity for the tomography was 4,500 m/s, and then we applied 

a weighted mask to guide the tomography and produce a stronger update in the stratified 

salt layer. This strategy made it possible to establish a more precise velocity model for 

the pre-salt zone. 

6.2. Preconditioning of seismic data 

According to Höecker and Fehmers (2002), three premises are required to apply 

filters successfully on post-stack seismic data: orientation analysis, edge detection, and 

smoothing with edge preservation. Furthermore, considering the criteria we adopted in 

this case study (which include amplitude, frequency anomalies, geometry, and fault and 

fracture density), application of SOF should guarantee that the quality of the data 

improves without having to change the criteria. 

In order to improve the quality of the seismic data contaminated with background 

noise, we applied SOF and image enhancement (Figure 15 b and c) to precondition the 

seismic data (Qi et al., 2014). Pre-conditioning should be concentrated in the region of 

interest.  The aim of SOF is to improve the lateral continuity of the seismic reflector and 

increase the signal-to-noise ratio (S/N). The SOF algorithm applies volumetric dip and 

azimuth calculations to avoid smearing of faults, fractures and other discontinuities using 

an overlapping window method (Marfurt, 2006). We used the SOF output to calculate an 

image enhancement through increasing frequency bandwidth (Bruce and Caldwell, 

2003), thereby bolstering weak frequencies to reduce the effect of attenuation (Figure 

15c). This step could be considered a type of spectral enhancement, the objective of which 

was to improve seismic resolution by increasing the frequency bandwidth. This process 
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does not create new frequencies, it only enhances the contribution of some frequencies 

existing within the seismic data to better define reservoir architecture.  

 

Figure 15: Preconditioning. (a) Input; (b) SOF; (c) Imaging enhancement. 

6.3.  Calculation of seismic attributes 

The seismic attributes were calculated after SOF and image enhancement. The 

curvature and spectral decomposition attributes were generated directly from SOF. The 
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coherence attribute was derived from the image enhancement step. The hybrid spectral 

decomposition (HSD) was obtained from the spectral decomposition step. The steps for 

calculating the seismic attributes are shown in Figure 14. 

The curvature attribute describes how a surface deviates from being planar (Figure 

16). Basically, it measures subtle lateral and vertical changes in dip that are often 

dominated by strong localized deformation; for example, carbonate reefs on 200 dipping 

surfaces can present the same curvature anomaly as a carbonate reef on a flat surface 

(Chopra and Marfurt, 2007). In this case study, several curvature attributes were tested, 

including the most positive, most negative, and dip curvatures. We found that dip 

curvatures, which are acquired by extracting the curvature in the direction of maximum 

dip, presented the best result. Volume curvature attributes can enhance seismic resolution, 

providing more insight into fault delineation and aiding in the prediction of fractures and 

their orientations (Roberts, 2001; Chopra and Marfurt, 2007). The curvature attribute is 

very susceptible to noise, so we calculated it after SOF. 

 

Figure 16: Curvature attribute in two dimensions, indicating that this attribute is positive in an anticline, 

negative in a syncline, and zero in a flat or dipping plane. 

The coherence attribute requires a central trace as a reference to make correlations 

between neighboring seismic traces using a vertical analysis window (Figure 17). 

Geologically, highly coherent seismic traces or waveforms indicate a laterally continuous 

lithology. Abrupt changes in waveform can indicate faults and fractures in the sediments 

(Chopra and Marfurt, 2007). According several tests, it was possible to see that the 

difference between the curvature calculation results before and after image enhancement. 

It was possible to see that there is the risk of boost up some noise and this attribute is very 

sentitive to noise level. And coherence shows to be more effective after improvement of 
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the resolution. We used the coherence attribute to search along structural dips, since it 

helps to reveal true edges. 

 

Figure 17: Spatial (or multitrace) analysis windows used to calculate the coherence attribute (W is defined 

as the vertical analysis window for time T). 

After we analyzed the dominant frequency and identified the frequency bandwidth 

that best represents the target, we used HSD to decompose the seismic data into frequency 

bands. This frequency bandwidth is selected to calculate the envelope attribute from 

which a specific amplitude range is isolated (Jesus et al., 2017). We obtained the HSD 

parameters after SOF application to maintain the proportionality of the amplitude and 

thereby preserve the reservoir anomalies. In order to achieve an optimized hybrid spectral 

decomposition for the area of interest, two steps are required: a sensitivity study (Stage 

1); and an isolation study of both frequency ranges and representative amplitudes (Stage 

2). 

Stage 1: For the sensitivity study, performed between the top and base of the reservoir of 

interest, we generated a dominant frequency attribute (Figure 18a) and selected the 

dominant frequency that best represented the reservoir interval. By analyzing the 

dominant frequency map at well locations 1, 2 and 3, we identified the dominant 

frequency as being approximately 8 Hz. Also, as part of our sensitivity study and using 

the same interval, we generated a root mean square amplitude map to identify low 

amplitude zones, which is a recurring characteristic of pre-salt carbonate mounds. As 

illustrated in Figure 18b, all wells except for well 4 are in low amplitude zones. 
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Figure 18: Dominant frequency. (a) Root mean square amplitude; (b) maps. 

Stage 2: After our sensitivity study had revealed the frequency best representing the 

interval of interest and we had identified the respective low amplitude zones through 

Stage 1, we could isolate the frequency and amplitude ranges by applying a Short-Time 

Fourier Transform (STFT) with a Hanning window for spectral decomposition of the SOF 

volume (Figure 15) and decompose the seismic data into frequency sub-bands. By 

knowing the representative frequency and well outcomes at the best well locations (wells 

1, 2 and 3) and identifying the low amplitude zones for the pre-salt carbonate mounds 

being investigated, we could isolate the frequency and amplitude associated with the 

carbonate mounds by selecting a dominant frequency sub-band of 8 Hz and then 

calculating an envelope attribute for this sub-band. To define the interval for the envelope 

that represents these pre-salt carbonate mounds, it was necessary to also use the acoustic 

impedance volume, which assumes a low impedance occurrence in the mound zones 

represented by wells 1, 2 and 3 (whereas well 4 was defined as non-reservoir).  
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Figure 19: Schematic of stage 2 for optimization and application of HSD (Hybrid Spectral 

Decomposition). First, the STFT (Short Time Fourier Transform) is applied and a frequency band is 

selected. Then the envelope attribute is calculated. 

As well 4 also presented a high value for the 8 Hz envelope, we established a 

cutoff to effectively isolate the carbonate mounds by combining the 8 Hz dominant 

frequency with the acoustic impedance volume representing a low impedance for the 

carbonate mounds. Where both the 8 Hz envelope and acoustic impedance presented low 

values, the area was considered a carbonate mound, but when only the envelope attribute 

value was low, the area was considered a non-reservoir (Table 3). We applied a maximum 

cutoff value of 0.27 for the envelope attribute to discriminate between reservoirs and non-

reservoirs.  

Table 3: Correlation between envelope and acoustic impedance. 
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            Finally, the following script was applied to the envelope attribute for 8 Hz as the 

dominant frequency (spectral decomposition) to generate the hybrid spectral 

decomposition: 

HSD = IF Envelope Value <= 540 THEN Envelope = Envelope ELSE Envelope = 541; 

Accordingly, if the envelope value was less than or equal to 540 then the value 

was retained (to represent reservoirs), otherwise the standard value of 541 was assigned 

(representing non-reservoirs). The spectral and hybrid spectral decompositions for the top 

reservoir horizon are shown in Figure 20. A southeast to northwest trend of low amplitude 

passing through wells 2 and 3 can be seen in Figure 20a, which can be associated with 

the carbonate mounds. Figure 20b reveals that HSD was better than spectral 

decomposition in identifying the main low amplitude trend corresponding to carbonate 

mounds (wells 2 and 3).  

Figure 21 shows the main quality control of HSD, where pseudo-log data from 

HSD was extracted at each well location (wells 1, 2, 3 and 4) and compared with the total 

porosity log rescaled to seismic output. The quality control showed good correlation 

between HSD pseudo-log and total porosity, so for low HSD values there is an inversely 

proportional high value for total porosity. This outcome increases the confidence in our 

HSD. 
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Figure 20: Spectral Decomposition (a), Hybrid Spectral Decomposition (b). 

 

Figure 21: The hybrid spectral decomposition pseudo log (black) and the porosity log (red) are well 

correlated (inversely). These logs were used as a quality control. 
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6.4.  Seismic facies classification 

Seismic facies can be defined as a group of seismic responses with characteristics 

that distinctly differ from other facies (John et al., 2008). According to Farzadi (2006), a 

3D multi-attribute seismic facies classification helps to identify lithofacies and geometric 

variations within carbonate features.  

Our selection of the seismic attributes is based on the geological information that 

each attribute could provide to identify the good reservoir quality geometries we sought. 

The curvature attribute was useful for identifying the fractures and fault zones based on 

the curvature and discontinuities in the seismic reflector (Figure 22a). The coherence 

attribute also proved useful for identifying high-density fault zones in the carbonate 

reservoir (Figure 22b). We apply HSD in our workflow because pre-salt carbonate 

mounds typically exhibit low amplitudes due to fractures increasing their porosity. All 

these attributes (curvature, coherence and HSD) are then combined for seismic facies 

classification, which is constrained from the top to the base of the reservoir. 

 

Figure 22: Curvature (a) and coherence (b) attributes applied to the structural map of the top of the 

reservoir, revealing faults and fracture zones around the wells. 
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The clustering technique that we use is unsupervised, which aims to partition the 

dataset into clusters without a priori information concerning the membership in a given 

cluster of a sample input (Xu and Wunsch, 2005). We employ a neural network as the 

algorithm for this unsupervised analysis because a priori tests show that it generates a 

partition with gradual changes in seismic facies patterns.  

The input data are highly dimensional and voluminous, which can be problematic 

for seismic facies classification. Redundancy and excess dimensionality can be reduced 

by principal component analysis (PCA) (Zhao et al., 2015), through which the input 

dataset is projected into a lower dimensional space formed by a subset of the highest 

variance principal components (Bishop, 1995). 

Principal component analysis (PCA) and self-organizing maps (SOM) represent 

multi-attributes analyses that have proven excellent approaches for pattern recognition 

during seismic interpretation and reservoir characterization (Roden et al., 2015; Zhao et 

al., 2015). PCA can be used to convert statistical relationships among multidimensional 

data into simple, geometric relationships and to organize a dataset of seismic attributes 

into a geometric SOM (Matos et al., 2007), producing a partition with changing patterns 

of seismic facies. In this work, we apply PCA with three components. To do this, we 

organized the model facies into a sequence of reference vectors in one dimension. The 

main purpose of PCA in this case is to assess the relative weights between curvature, 

coherence and HSD and thereby minimize redundancy. An optimal facies model is 

established through an iterative adaptation process. The clustering process starts by first 

specifying arbitrary nodes. Then a sample input is chosen and mapped to the closest node. 

The optimal facies model and its adjacent neighbors are adjusted towards the sample input 

and this step is repeated for 65 iterations so that the optimal facies model along with its 

closest neighbors become more like the selected input sample. 

The seismic facies (Figure 23) we obtained in this work were generated using the 

following parameters: five classes, PCA with three components, and an unsupervised 

neural network method. The number of classes is defined empirically through what we 

term a “360º approach” (Figure 24) that consists of the following iterative loops: 1) obtain 

all seismic attributes and analyze them in order to see if they honor the defined criteria; 

2) perform quality control using well information (in this work, we compare total porosity 

with HSD); 3) run unsupervised seismic facies classification; 4) select representative 

facies with features of good reservoir quality carbonate mounds and observe the resultant 
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geobody extraction; 5) crosscheck the geobody distribution versus Hydraulic Flow Unit 

(HFU), where HFU 2 and 3 means there is no flow and HFU 4 means there is flow ; and 

6) finish the process if the results are consistent with the well log response and, if not, re-

run it but change key parameters (in our case, we changed the HSD cutoffs and the 

number of seismic facies). 

 

Figure 23: Seismic facies. Structural map of the top of the reservoir, highlighting the carbonate mounds. 
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Figure 24: Illustration of our “360º approach” applied in this work. 
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7.  Results and Discussions: Article 2 

The outcomes of applying the curvature and coherence attributes to the structural 

map of the top of the reservoir are shown in Figure 22 (a and b). Low coherence values 

and high variations in curvature were found around carbonate mounds, indicating a high 

density of faults and fracture zones. 

We use the wells as a quality control to interpret the results of our HSD. We first 

calculate pseudo logs of the HSD with a central frequency of 8 Hz that behaved similarly 

to the background model for seismic inversion. Inverse correlations between the pseudo 

logs of the HSD and porosity for each well are presented in quality control (Figure 21). 

Well 4, which is in a clay zone, presents low HSD values.  

Geometric attributes (curvature and coherence) were used to identify zones with 

a high density of faults and fractures, typical of carbonate mounds, for the seismic facies 

classification. Those attributes are also combined with the HSD data. We chose five 

classes of seismic facies, and a facies map indicating reservoir heterogeneities is provided 

in Figure 23. This map reveals facies connectivity. Facies 1-3 were identified in our 360º 

approach as carbonate mounds with high porosity and a high density of fractures, 

representing the best reservoirs. In this work, we consider classes 4 and 5 as non-

reservoirs in terms of their quality. Figure 25 shows the extracted geobody of Facies 1-3 

classified as good reservoir quality carbonate mounds. It is noteworthy that wells 2 and 3 

are in this geobody, whereas wells 1 and 4 are in an area not identified as a carbonate 

mound, corroborating the well log response.  
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Figure 25: Geobody of carbonate mounds extracted from seismic facies classification. 
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8.  Conclusions 

8.1. Conclusions of the Article 1 

The preconditioning of seismic data and optimization approach used were critical 

to guaranteeing that the target zone was accurately represented in the spectral 

decomposition method. Elastic inversion results indicated that the discovery and appraisal 

well locations had good quality sandstones as reservoir facies. However, the spectral 

decomposition analysis indicated otherwise because it showed different signals at the well 

locations. These differences were interpreted as an indication of cleaner sandstones at the 

discovery well and shalier sandstones at the appraisal well. Seismic facies classification 

was achieved using a combination of acoustic inversion, coherence, dominant frequency 

and spectral decomposition attributes, resulting in a satisfactory outcome, exhibiting a 

good correlation with porosity and gamma ray well log data. Again, these results showed 

that the appraisal well had a poorer reservoir quality when compared to the discovery 

well, as predicted by the spectral decomposition. The proposed methodology would have 

allowed the prediction of reservoir potential before the appraisal well was drilled, which 

was confirmed by drilling, thus proving the effectiveness of the proposed approach in 

reducing exploration risk. 

8.2. Conclusion of the Article 2 

The proposed workflow proved efficient in identifying good reservoir quality 

carbonate mounds within the complex environment of the Brazilian presalt zone. The 

coherence and curvature attributes were useful tools for identifying faults and fracture 

zones, high densities of which represent one of the most important characteristics of 

carbonate mounds. Because low seismic amplitude is also a typical feature of presalt 

carbonate mounds, we used HSD that allowed us to discriminate good reservoir quality 

carbonate mounds from poor reservoir zones (as identified for well 4). Our multiattributes 

facies classification generated a geologically significant outcome for static modeling, and 

the extracted geobody was used as an additional spatial indicator of porosity distribution. 

This workflow has been successfully applied in three other presalt carbonate fields. 
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